首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有103条查询结果,搜索用时 31 毫秒
11.
Global patterns of leaf mechanical properties   总被引:1,自引:0,他引:1  
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.  相似文献   
12.
Morgan HD  Westoby M 《Annals of botany》2005,96(7):1321-1330
BACKGROUND AND AIMS: Species' 2C-values (mass of DNA in G(1) phase 2n nuclei) vary by at least four orders of magnitude among seed plants. The 2C-value has been shown to be co-ordinated with a number of other species traits, and with environmental variables. A prediction that species 2C-values are negatively related to leaf life span (LL) and leaf mass per area (LMA) is tested. These leaf traits are components of a major dimension of ecological variation among plant species. METHODS: Flow cytometry was used to measure the 2C-values for 41 Australian seed plant species, 40 of which were new to the literature. Where possible, LL and LMA data from the global literature were combined with 2C-values from our data set and online C-value databases. KEY RESULTS: Across all species, weak positive relationships were found between 2C-values and both LL and LMA; however, these did not reflect the relationships within either angiosperms or gymnosperms. Across 59 angiosperm species, there were weak negative relationships between 2C-values and both LL (r2 = 0.13, P = 0.005) and LMA (r2 = 0.15, P = 0.002). These relationships were the result of shifts to longer LL and greater LMA in woody compared with herbaceous growth forms, with no relationships present within growth forms. It was not possible to explain a positive relationship between 2C-values and LMA (r2 = 0.30, P = 0.024) across 17 gymnosperm species. The 2C-value was not related to LL or LMA either across species within orders (except for LMA among Pinales), or as radiation divergences in a model phylogeny. CONCLUSIONS: Gymnosperms appear to vary along a spectrum different from angiosperms. Among angiosperms, weak negative cross-species relationships were associated with growth form differences, and traced to a few divergences deep in the model phylogeny. These results suggest that among angiosperms, nuclear DNA content and leaf strategy are unrelated.  相似文献   
13.
Assessing the generality of global leaf trait relationships   总被引:14,自引:0,他引:14  
Global-scale quantification of relationships between plant traits gives insight into the evolution of the world's vegetation, and is crucial for parameterizing vegetation-climate models. A database was compiled, comprising data for hundreds to thousands of species for the core 'leaf economics' traits leaf lifespan, leaf mass per area, photosynthetic capacity, dark respiration, and leaf nitrogen and phosphorus concentrations, as well as leaf potassium, photosynthetic N-use efficiency (PNUE), and leaf N : P ratio. While mean trait values differed between plant functional types, the range found within groups was often larger than differences among them. Future vegetation-climate models could incorporate this knowledge. The core leaf traits were intercorrelated, both globally and within plant functional types, forming a 'leaf economics spectrum'. While these relationships are very general, they are not universal, as significant heterogeneity exists between relationships fitted to individual sites. Much, but not all, heterogeneity can be explained by variation in sample size alone. PNUE can also be considered as part of this trait spectrum, whereas leaf K and N : P ratios are only loosely related.  相似文献   
14.
Bivariate line-fitting methods for allometry   总被引:14,自引:0,他引:14  
Fitting a line to a bivariate dataset can be a deceptively complex problem, and there has been much debate on this issue in the literature. In this review, we describe for the practitioner the essential features of line-fitting methods for estimating the relationship between two variables: what methods are commonly used, which method should be used when, and how to make inferences from these lines to answer common research questions. A particularly important point for line-fitting in allometry is that usually, two sources of error are present (which we call measurement and equation error), and these have quite different implications for choice of line-fitting method. As a consequence, the approach in this review and the methods presented have subtle but important differences from previous reviews in the biology literature. Linear regression, major axis and standardised major axis are alternative methods that can be appropriate when there is no measurement error. When there is measurement error, this often needs to be estimated and used to adjust the variance terms in formulae for line-fitting. We also review line-fitting methods for phylogenetic analyses. Methods of inference are described for the line-fitting techniques discussed in this paper. The types of inference considered here are testing if the slope or elevation equals a given value, constructing confidence intervals for the slope or elevation, comparing several slopes or elevations, and testing for shift along the axis amongst several groups. In some cases several methods have been proposed in the literature. These are discussed and compared. In other cases there is little or no previous guidance available in the literature. Simulations were conducted to check whether the methods of inference proposed have the intended coverage probability or Type I error. We identified the methods of inference that perform well and recommend the techniques that should be adopted in future work.  相似文献   
15.
Accessory costs of reproduction frequently equal or exceed direct investment in offspring, and can limit the evolution of small offspring sizes. Early angiosperms had minimum seed sizes, an order of magnitude smaller than their contemporaries. It has been proposed that changes to reproductive features at the base of the angiosperm clade reduced accessory costs thus removing the fitness disadvantage of small seeds. We measured accessory costs of reproduction in 25 extant gymnosperms and angiosperms, to test whether angiosperms can produce small seeds more economically than gymnosperms. Total accessory costs scaled isometrically to seed mass for angiosperms but less than isometrically for gymnosperms, so that smaller seeds were proportionally more expensive for gymnosperms to produce. In particular, costs of abortions and packaging structures were significantly higher in gymnosperms. Also, the relationship between seed:ovule ratio and seed size was negative in angiosperms but positive in gymnosperms. We argue that the carpel was a key evolutionary innovation reducing accessory costs in angiosperms by allowing sporophytic control of pre- and postzygotic mate selection and timing of resource allocation. The resulting reduction in costs of aborting unfertilized ovules or genetically inferior embryos would have lowered total reproductive costs enabling early angiosperms to evolve small seed sizes and short generation times.  相似文献   
16.
17.
18.
19.
A. Nicotra  N. Babicka  M. Westoby 《Oecologia》2002,130(1):136-145
We examined patterns of seedling root architecture, morphology and anatomy in Australian perennial plants chosen as phylogenetically independent contrasts (PICs) for rainfall in the areas they inhabit. Our objective was to assess whether there are consistent evolutionary patterns in structure of seedling root systems in species from different rainfall environments when examined across multiple evolutionary lineages. Seedlings were grown to a standardised developmental stage under controlled conditions. We found that seedling root systems of species restricted to low rainfall environments are characterised by greater proportional allocation to main root axis and have proportionally smaller main root axis diameter and areas of stele and xylem. Species of low rainfall environments also had higher specific root length (SRL) of the main axis, but lower SRL when the entire root system was considered. Seedling root system elongation rates were higher in species of high rainfall relative to those of low rainfall environments, paralleling expected differences in relative growth rate. The higher root system elongation rates in species of high rainfall environments were associated with greater numbers of growing tips in the root system, but not with differences in elongation rates of individual tips, relative to species of low rainfall environments.  相似文献   
20.
Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号