首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   18篇
  204篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   10篇
  2010年   11篇
  2009年   13篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   1篇
  1999年   10篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   8篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
181.
The biosynthesis, processing, and secretion of parthormone and the effect of calcium on these processes were measured in dispersed porcine parthyroid cells incubated with [(35)S]methionine. Proparathormone was detected at 10 min, the earliest time measured, and was rapidly and apparently quantitatively converted to parathormone. The half-life of the prohomormone pool was 15 min. Secretion of parathormone was detected by 20 min. In pulse-chase experiments there was a period between 20 and 40 min during which the wave of newly-synthesized parathormone was secreted. After 40 min during little additional radioactive hormone was secreted, but dibutyryl cyclic AMP, an agent that can mobilize stored parathormone, when added to the incubation mixtures enhanced radioactive parathormone secretion but only after 60 min, although it increased net hormone secretion as determined by radioimmunoassay to the same extent at all times studied. When the ionized calcium concentration of the medium was lowered, more radioactive hormone was secreted at all times but the effect was greatest on that hormone that was synthesized less than 60 min previously ; however, net hormone secretion in contrast to radioactive hormone was enhanced equally at all intervals. These data could mean that the refractoriness to secretion of parathormone 40-60 min of age was related to maturation of secretory container preparatory to storage. Low calcium (0.5 mM) stimulated hormone secretion up to fivefold compared to high calcium (3.0 mM) but did not affect synthesis of parathormone or proparathormne or conversion of the latter to hormone. During processing at least 70 percent of the intracellular parathormone was lost, presumably through proteolysis and this degradation was greater at high calcium. These data have been interpreted in light of the concept that two secretable pools of parathormone exist within the parathyroid.  相似文献   
182.
The effect of a single blood meal on the host-seeking response of Anopheles gambiae was investigated in the laboratory using a behavioural bioassay, whereas possible changes at the chemosensory level were monitored using electroantennogram recording (EAG). To avoid the possible confounding effect of body size, mosquitoes of a large size class only were used. Five-day old female mosquitoes were given a blood meal on a human arm and exposed to the emanations of a human hand in an olfactometer at 3, 24, 40, 48 and 72 h following the meal and their behaviour and EAG response to host stimuli were compared with that of unfed mosquitoes (controls) of corresponding age. During egg development, mosquitoes had access to glucose and an oviposition tray. The ovarian development of blood-fed mosquitoes that responded to host odours was compared with that of blood-fed mosquitoes that had not been exposed to host odours. The EAG response of blood-fed and control mosquitoes to host odour was examined upon stimulation with air led over incubated human sweat, hexanoic acid, indole and geranyl acetone. EAGs were recorded at times after a blood meal corresponding with those used in the behavioural experiment. There was no host-seeking response at 3 and 24 h post blood meal (pbm). Seven percent of the mosquitoes responded to human emanations 40-h pbm, 27% at 48 h and 68% at 72 h following a blood meal. The average response of controls to host stimuli varied from 35 (at t=40 h) to 67%. There was no ovarian development in the unfed group of mosquitoes. Of the mosquitoes that responded to host odour 48 h pbm, 12.5% (n=5) had ovaries in Christophers' stage IV and the remainder in stage V. Of the mosquitoes that responded 72 h pbm, 66.7% (n=94) had ovaries in stage V and 31.2% (n=44) had recently oviposited. Maximum EAG amplitudes recorded from blood-fed and control mosquitoes were similar for mosquitoes in Christophers' stages I-III, whereas in stage IV EAG amplitudes recorded from the blood-fed group were significantly lower than those of the corresponding control group in response to headspace of incubated human sweat and to indole. The results show that there was a strong inhibition of host seeking in An. gambiae for a period of at least 40 h following a blood meal. Host-seeking returned to pre-blood meal levels 72-h post feeding and was associated with egg maturation. The inhibition of host-seeking behaviour was accompanied by an inhibition of olfactory sensitivity to headspace of incubated sweat and indole just before the resumption of the host-seeking response. The implications of these findings for mosquito surveillance with host odours are discussed.  相似文献   
183.
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34+ fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating mouse tissues. Here, we show that humanized BLT mice sustained high-level disseminated human immunodeficiency virus (HIV) infection, resulting in CD4+ T-cell depletion and generalized immune activation. Following infection, HIV-specific humoral responses were present in all mice by 3 months, and HIV-specific CD4+ and CD8+ T-cell responses were detected in the majority of mice tested after 9 weeks of infection. Despite robust HIV-specific responses, however, viral loads remained elevated in infected BLT mice, raising the possibility that these responses are dysfunctional. The increased T-cell expression of the negative costimulator PD-1 recently has been postulated to contribute to T-cell dysfunction in chronic HIV infection. As seen in human infection, both CD4+ and CD8+ T cells demonstrated increased PD-1 expression in HIV-infected BLT mice, and PD-1 levels in these cells correlated positively with viral load and inversely with CD4+ cell levels. The ability of humanized BLT mice to generate both cellular and humoral immune responses to HIV will allow the further investigation of human HIV-specific immune responses in vivo and suggests that these mice are able to provide a platform to assess candidate HIV vaccines and other immunotherapeutic strategies.An ideal animal model of human immunodeficiency virus (HIV) infection remains elusive. Nonhuman primates that are susceptible to HIV infection typically do not develop immunodeficiency (63), and although the simian immunodeficiency virus (SIV) infection of rhesus macaques has provided many critically important insights into retroviral pathogenesis (30), biological and financial considerations have created some limitations to the wide dissemination of this model. The great need for an improved animal model of HIV itself recently has been underscored by the disappointing results of human trials of MRKAd5, an adenovirus-based HIV type 1 (HIV-1) vaccine. This vaccine was not effective and actually may have increased some subjects'' risk of acquiring HIV (53). In the wake of these disappointing results, there has been increased interest in humanized mouse models of HIV infection (54). The ability of humanized mouse models to test candidate vaccines or other immunomodulatory strategies will depend critically on the ability of these mice to generate robust anti-HIV human immune responses.Mice have provided important model systems for the study of many human diseases, but they are unable to support productive HIV infection, even when made to express human coreceptors for the virus (7, 37, 52). A more successful strategy to humanize mice has been to engraft human immune cells and/or tissues into immunodeficient severe combined immunodeficiency (SCID) or nonobese diabetic (NOD)/SCID mice that are unable to reject xenogeneic grafts (39, 42, 57). Early versions of humanized mice supported productive HIV infection and allowed investigators to begin to address important questions in HIV biology in vivo (23, 40, 43-45). More recently, human cord blood or fetal liver CD34+ cells have been used to reconstitute Rag2−/− interleukin-2 receptor γ chain-deficient (γc−/−) and NOD/SCID/γc−/− mice, resulting in higher levels of sustained human immune cell engraftment (27, 29, 61). These mice have allowed for stable, disseminated HIV infection (2, 4, 24, 65, 67), including mucosal transmission via vaginal and rectal routes (3). These mice recently have been used to demonstrate an important role for Treg cells in acute HIV infection (29) and to demonstrate that the T-cell-specific delivery of antiviral small interfering RNA is able to suppress HIV replication in vivo (31). These mice also have demonstrated some evidence of adaptive human immune responses, including the generation of HIV-specific antibody responses in some infected mice (2, 65), and some evidence of humoral and cell-mediated responses to non-HIV antigens or pathogens (24, 61). Most impressively, Rag2−/− γc−/− mice reconstituted with human fetal liver-derived CD34+ cells have generated humoral responses to dengue virus infection that demonstrated both class switching and neutralizing capacity (32). In spite of these advances, however, these models have not yet been reported to generate de novo HIV-specific cell-mediated immune responses, which are considered to be a crucial arm of host defense against HIV infection in humans.In contrast to humanized mouse models in which only human hematopoietic cells are transferred into immunodeficient mice, the surgical implantation of human fetal thymic and liver tissue has been performed in addition to the transfer of human hematopoietic stem cells (HSC) to generate mice in which human T cells are educated by autologous human thymic tissue rather than by the xenogeneic mouse thymus. Melkus and colleagues refer to mice they have reconstituted in this way as NOD/SCID-hu BLT (for bone marrow, liver, and thymus), or simply BLT, mice (41). We previously referred to mice that we have humanized in a similar way as NOD/SCID mice cotransplanted with human fetal thymic and liver tissues (Thy/Liv) and CD34+ fetal liver cells (FLC) (33, 60) but now adopt the designation BLT mice as well. BLT mice demonstrate the robust repopulation of mouse lymphoid tissues with functional human T lymphocytes (33, 41, 60) and can support the rectal and vaginal transmission of HIV (13, 59). Further, BLT mice demonstrate antigen-specific human immune responses against non-HIV antigens and/or pathogens (41, 60). The ability of these mice to generate human immune responses against HIV, however, has not yet been reported. In this study, we investigated whether the provision of autologous human thymic tissue in BLT mice generated by the cotransplantion of human fetal Thy/Liv tissues and CD34+ FLC would allow for the maturation of human T cells in humanized mice capable of providing improved cellular responses to HIV as well as providing adequate help for improved humoral responses. To describe the cells contributing to human immune responses in BLT mice, we also characterized the phenotypes of multiple subsets of T cells, B cells, dendritic cells (DCs), and monocytes/macrophages present in uninfected humanized mice. The generation of robust HIV-directed human cellular and humoral immune responses in these mice would further demonstrate the ability of humanized mice to provide a much needed platform for the evaluation of HIV vaccines and other novel immunomodulatory strategies.  相似文献   
184.
185.
186.
187.
188.
A more than 10-fold difference in the specificity and catalytic efficiency for 1-naphthyl esters was measured between two allozymes of esterase-4 from Drosophila mojavensis. This difference is mainly caused by a difference in the affinity for the 1-naphthyl esters. The amino acid compositions of the allozymes are not significantly different, which means that the difference in primary structure is small. Small differences in primary structure generally do not result in such a large increase in catalytic efficiency and such a large shift in substrate specificity as was found in the present study.   相似文献   
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号