首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   18篇
  204篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   10篇
  2010年   11篇
  2009年   13篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   1篇
  1999年   10篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   8篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
11.
Two small-plaque mutants of herpes simplex virus type 2 (HSV-2) (strain 333), whose growth at 39 C was blocked in certain cell types (cell-dependent temperature sensitivity), were compared compared with parental virus in a number of biological assays. One mutant (no. 69) was found to produce a large number of morphologically normal, but noninfectious, particles; under nonpermissive conditions, these mutant particles were able to interfere with the replication of wild-type HSV-2. The other mutant (no. 74), which is known to belong to a different complementation group, appeared to direct little virus DNA synthesis, even at the permissive temperature. Progeny production and virus DNA synthesis in cells infected by mutant 74 were delayed in comparison with wild-type virus-infected cells. Both mutants were found to be more sensitive to UV irradiation than the parental virus; this was especially marked in the case of mutant 74. Moreover, this mutant was found to have a high transforming efficiency at much lower doses of irradiation than those needed to abolish the cytopathic effect of wildtype HSV-2.  相似文献   
12.
13.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   
14.
Five years ago images from the Arab uprisings revealed a renewed investment in political visibility. Despite the brutal outcome of most of these revolts, the centrality of seeing for understanding the dynamics of political vision and struggle in the region remains salient. Images serve as important touchstones around which political narratives emerge and cohere. In this special issue on Visual Revolutions in the Middle East, seven scholars— Diana K. Allan, Zeynep Devrim Gürsel, Alisa Lebow, Peter Limbrick, Anjali Nath, Peter Snowdon and Mark R. Westmoreland—bring interdisciplinary attention to the generative possibilities of image-making in sites of political contestation. Whether through archival remnants, mobile screen technologies or the lens of a camera, the contributors to this collection explore the image as an agent of expression, engagement and critique, operating at the interface between political desires and evidentiary forms of visuality.  相似文献   
15.
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.  相似文献   
16.
17.
18.
19.
A proton nuclear magnetic resonance study of the four histidine residues of thermally unfolded ribonuclease A has provided evidence that two of the residues are in regions of residual structure, whereas the other two are freely exposed to solvent. Histidine-48 and, tentatively, histidine-105 occupy an environment at 69 degrees characterized by residual structure and display a pK value of 5.75 and a spin-lattice relaxation time of about 0.8 sec at pH 5.5. Histidine-12 and, tentatively, histidine-119 are in an environment at 69 degrees which is freely accessible to solvent and show a pK value of 5.96 and a spin-lattice relaxation time of about 1.1 sec at pH 5.5.  相似文献   
20.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号