首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  74篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
31.
SUMMARY Malaria parasites often manage to maintain an infection for several months or years in their vertebrate hosts. In humans, rodents and birds, most of the fitness costs associated with malaria infections are in the short initial primary (high parasitaemia) phase of the infection, whereas the chronic phase (low parasitaemia) is more benign to the host. In wild birds, malaria parasites have mainly been studied during the chronic phase of the infection. This is because the initial primary phase of infection is short in duration and infected birds with severe disease symptoms tend to hide in sheltered places and are thus rarely caught and sampled. We therefore wanted to investigate the relationship between the parasitaemia during the primary and chronic phases of the infection using an experimental infection approach. We found a significant positive correlation between parasitaemia in the primary peak and the subsequent chronic phase of infection when we experimentally infected great reed warblers (Acrocephalus arundinaceus) with Plasmodium ashfordi. The reason for this association remains to be understood, but might arise from individual variation in exoerythrocytic parasite reservoirs in hosts, parasite antigenic diversity and/or host genetics. Our results suggest that the chronic phase parasitaemia can be used to qualitatively infer the parasitaemia of the preceding and more severe primary phase, which is a very important finding for studies of avian malaria in wild populations.  相似文献   
32.
Random amplified polymorphic DNA (RAPD) bands that distinguish Meloidogyne hapla and M. chitwoodi from each other, and from other root-knot nematode species, were identified using a series of random octamer primers. The species-specific amplified DNA fragments were cloned and sequenced, and then the sequences were used to design 20-mer primer pairs that specifically amplified a DNA fragment from each species. Using the primer pairs, successful amplifications from single juveniles were readily attained. A mixture of four primers in a single PCR reaction mixture was shown to identify single juveniles of M. hapla and M. chitwoodi. To confirm specificity, the primers were used to amplify DNA from several isolates of M. hapla that originated from different crops and locations in North America and also from isolates of M. chitwoodi that differed in host range. In characterizing the M. hapla isolates, it was noted that there was a mitochondrial DNA polymorphism among isolates for cleavage by the restriction endonuclease DraI.  相似文献   
33.
Complex Mhc-based mate choice in a wild passerine   总被引:5,自引:0,他引:5  
The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes.  相似文献   
34.
Little is known about the development of infection of malaria parasites of the genus Plasmodium in wild birds. We used qPCR, targeting specific mitochondrial lineages of Plasmodium ashfordi (GRW2) and Plasmodium relictum (GRW4), to monitor changes in intensities of parasitemia in captive great reed warblers Acrocephalus arundinaceus from summer to spring. The study involved both naturally infected adults and experimentally infected juveniles. The experiment demonstrated that P. ashfordi and P. relictum lineages differ substantially in several life-history traits (e.g. prepatent period and dynamics of parasitemia) and that individual hosts show substantial differences in responses to these infections. The intensity of parasitemia of lineages in mixed infections co-varied positively, suggesting a control mechanism by the host that is general across the parasite lineages. The intensity of parasitemia for individual hosts was highly repeatable suggesting variation between the host individuals in their genetic or acquired control of the infections. In future studies, care must be taken to avoid mixed infections in wild caught donors, and when possible use mosquitoes for the experiments as inoculation of infectious blood ignores important initial stages of the contact between the bird and the parasite.  相似文献   
35.
 The class I genes of the major histocompatibility complex (Mhc) are here investigated for the first time in a passerine bird. The great reed warbler is a rare species in Sweden with a few semi-isolated populations. Yet, we found extensive Mhc class I variation in the study population. The variable exon 3, corresponding to the α2 domain, was amplified from genomic DNA with degenerated primers. Seven different genomic class I sequences were detected in a single individual. One of the sequences had a deletion leading to a shift in the reading frame, indicating that it was not a functional gene. A randomly selected clone was used as a probe for restriction fragment length polymorphism (RFLP) studies in combination with the restriction enzyme Pvu II. The RFLP pattern was complex with 21–25 RFLP fragments per individual and extensive variation. Forty-nine RFLP genotypes were detected in 55 tested individuals. To study the number of transcribed genes, we isolated 14 Mhc class I clones from a cDNA library from a single individual. We found eight different sequences of four different lengths (1.3–2.2 kilobases), suggesting there are at least four transcribed loci. The number of nonsynonymous substitutions (d N ) in the peptide binding region of exon 3 were higher than the number of synonymous substitutions (d S ), indicating balancing selection in this region. The number of transcribed genes and the numerous RFLP fragments found so far suggest that the great reed warbler does not have a "minimal essential Mhc" as has been suggested for the chicken. Received: 13 May 1998 / Revised: 18 August 1998  相似文献   
36.
The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1–α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.  相似文献   
37.
Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows'' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.  相似文献   
38.
A fragment of the mitochondrial cytochrome b gene of avian malaria (genera Haemoproteus and Plasmodium) was amplified from blood samples of 12 species of passerine birds from the genera Acrocephalus, Phylloscopus and Parus. By sequencing 478 nucleotides of the obtained fragments, we found 17 different mitochondrial haplotypes of Haemoproteus or Plasmodium among the 12 bird species investigated. Only one out of the 17 haplotypes was found in more than one host species, this exception being a haplotype detected in both blue tits (Parus caeruleus) and great tits (Parus major). The phylogenetic tree which was constructed grouped the sequences into two clades, most probably representing Haemoproteus and Plasmodium, respectively. We found two to four different parasite mitochondrial DNA (mtDNA) haplotypes in four bird species. The phylogenetic tree obtained from the mtDNA of the parasites matched the phylogenetic tree of the bird hosts poorly. For example, the two tit species and the willow warbler (Phylloscopus trochilus) carried parasites differing by only 0.6% sequence divergence, suggesting that Haemoproteus shift both between species within the same genus and also between species in different families. Hence, host shifts seem to have occurred repeatedly in this parasite host system. We discuss this in terms of the possible evolutionary consequences for these bird species.  相似文献   
39.
Adult honeybees, confined singly or in small clusters, were exposed for 0.5, 6, and 24 hours to 2.45-GHz continuous wave microwave radiation at power densities of 3, 6, 12, 25, and 50 mW/cm2. Following exposure, bees were held in the incubator for 21 days to determine the consumption of sucrose syrup and to observe mortality. No significant differences were found between microwave-treated and sham-treated or control bees.  相似文献   
40.
The sex of 746 great reed warbler fledglings (from 175 broods) was determined by the use of single primer polymerase chain reaction. The reliability of the technique was confirmed as 104 of the fledglings were subsequently recorded as adults of known sex. The overall sex ratio did not differ from unity. Variation in sex ratios between broods was larger than expected from a binomial distribution. Female identity explained some of the variation of brood sex ratio indicating that certain females consistently produced sex ratios that departed from the average value in the population. The theory of sex allocation predicts that parents should adjust the sex ratio of their brood to the relative value of sons and daughters and this may vary in relation to the quality of the parents or to the time of breeding. In the great reed warbler, the proportion of sons was not related to time of breeding, or to any of five female variables. Of five male variables, males with early arrival date tended to produce more daughters. The sex ratio of fledglings that were a result of extra-pair fertilizations did not differ from that of legitimate fledglings. Hence, there is currently no evidence of that female great reed warblers invest in a higher proportion of sons when mated with attractive males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号