首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2700篇
  免费   297篇
  国内免费   2篇
  2021年   24篇
  2019年   30篇
  2018年   25篇
  2017年   23篇
  2016年   54篇
  2015年   71篇
  2014年   83篇
  2013年   100篇
  2012年   125篇
  2011年   114篇
  2010年   77篇
  2009年   75篇
  2008年   93篇
  2007年   113篇
  2006年   108篇
  2005年   98篇
  2004年   88篇
  2003年   93篇
  2002年   107篇
  2001年   89篇
  2000年   84篇
  1999年   73篇
  1998年   46篇
  1997年   47篇
  1996年   35篇
  1995年   20篇
  1994年   33篇
  1993年   26篇
  1992年   57篇
  1991年   35篇
  1990年   60篇
  1989年   46篇
  1988年   41篇
  1987年   48篇
  1986年   54篇
  1985年   44篇
  1984年   57篇
  1983年   35篇
  1982年   40篇
  1981年   23篇
  1980年   23篇
  1979年   37篇
  1978年   35篇
  1977年   48篇
  1976年   28篇
  1975年   28篇
  1974年   38篇
  1973年   19篇
  1972年   35篇
  1970年   16篇
排序方式: 共有2999条查询结果,搜索用时 15 毫秒
151.
The fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.  相似文献   
152.
153.
154.
Greenbeard genes identify copies of themselves in other individuals and cause their bearer to behave nepotistically towards those individuals. Bacterial toxins (bacteriocins) exemplify the greenbeard effect because producer strains carry closely linked genes for immunity, such that toxicity is limited to nonproducer strains. Bacteriocin producers can be maintained in a dynamic polymorphism, known as rock‐paper‐scissors (RPS) dynamics, with immune and susceptible strains. However, it is unclear whether and how such dynamics will be maintained in the presence of multiple toxin types (multiple beard ‘colours’). Here, we analyse strain dynamics using models of recurrent patch colonization and population growth. We find that (i) polymorphism is promoted by a small number of founding lineages per patch, strong local resource competition and the occurrence of mutations; (ii) polymorphism can be static or dynamic, depending on the intensity of local interactions and the costs of toxins and immunity; (iii) the occurrence of multiple toxins can promote RPS dynamics; and (iv) strain diversity can be maintained even when toxins differ in toxicity or lineages can exhibit multitoxicity/multi‐immunity. Overall, the factors that maintain simple RPS dynamics can also promote the coexistence of multiple toxin types (multiple beard colours), thus helping to explain the remarkable levels of bacteriocin diversity in nature. More generally, we contrast these results with the maintenance of marker diversity in genetic kin recognition.  相似文献   
155.
156.
An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2007 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty‐five different associated projects were conducted across five US agencies over the course of nearly a decade involving hundreds of researchers. One of the primary objectives of the intensive campaign was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 flux over the major croplands of the United States by comparing the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom‐up inventory flux estimate that was used to evaluate the atmospheric inversion results. Estimates were compared to the inventory from three different inversion systems, representing spatial scales varying from high resolution mesoscale (PSU), to continental (CSU) and global (CarbonTracker), coupled to different transport models and optimization techniques. The inversion‐based mean CO2‐C sink estimates were generally slightly larger, 8–20% for PSU, 10–20% for CSU, and 21% for CarbonTracker, but statistically indistinguishable, from the inventory estimate of 135 TgC. While the comparisons show that the MCI region‐wide C sink is robust across inversion system and spatial scale, only the continental and mesoscale inversions were able to reproduce the spatial patterns within the region. In general, the results demonstrate that inversions can recover CO2 fluxes at sub‐regional scales with a relatively high density of CO2 observations and adequate information on atmospheric transport in the region.  相似文献   
157.
B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B. pseudomallei lipopolysaccharide in blood is greater than the response to other lipopolysaccharide expressing isolates. Our findings suggest that B. pseudomallei lipopolysaccharide may play a central role in stimulating the host response in melioidosis.  相似文献   
158.

Background

Trachoma, caused by ocular Chlamydia trachomatis infection, is the leading infectious cause of blindess, but its prevalence is now falling in many countries. As the prevalence falls, an increasing proportion of individuals with clinical signs of follicular trachoma (TF) is not infected with C. trachomatis. A recent study in Tanzania suggested that other bacteria may play a role in the persistence of these clinical signs.

Methodology/Principal Findings

We examined associations between clinical signs of TF and ocular colonization with four pathogens commonly found in the nasopharnyx, three years after the initiation of mass azithromycin distribution. Children aged 0 to 5 years were randomly selected from 16 Gambian communitites. Both eyes of each child were examined and graded for trachoma according to the World Health Organization (WHO) simplified system. Two swabs were taken from the right eye: one swab was processed for polymerase chain reaction (PCR) using the Amplicor test for detection of C. trachomatis DNA and the second swab was processed by routine bacteriology to assay for the presence of viable Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus and Moraxella catarrhalis. Prevalence of TF was 6.2% (96/1538) while prevalence of ocular C. trachomatis infection was 1.0% (16/1538). After adjustment, increased odds of TF were observed in the presence of C. trachomatis (OR = 10.4, 95%CI 1.32–81.2, p = 0.03), S. pneumoniae (OR = 2.14, 95%CI 1.03–4.44, p = 0.04) and H. influenzae (OR = 4.72, 95% CI 1.53–14.5, p = 0.01).

Conclusions/Significance

Clinical signs of TF can persist in communities even when ocular C. trachomatis infection has been controlled through mass azithromycin distribution. In these settings, TF may be associated with ocular colonization with bacteria commonly carried in the nasopharnyx. This may affect the interpretation of impact surveys and the determinations of thresholds for discontinuing mass drug administration.  相似文献   
159.

Background

The World Health Organization recommends at least 3 annual antibiotic mass drug administrations (MDA) where the prevalence of trachoma is >10% in children ages 1–9 years, with coverage at least at 80%. However, the additional value of higher coverage targeted at children with multiple rounds is unknown.

Trial Design

2×2 factorial community randomized, double blind, trial.

Trial methods

32 communities with prevalence of trachoma ≥20% were randomized to: annual MDA aiming for coverage of children between 80%–90% (usual target) versus aiming for coverage>90% (enhanced target); and to: MDA for three years versus a rule of cessation of MDA early if the estimated prevalence of ocular C. trachomatis infection was less than 5%. The primary outcome was the community prevalence of infection with C. trachomatis at 36 months.

Results

Over the trial''s course, no community met the MDA cessation rule, so all communities had the full 3 rounds of MDA. At 36 months, there was no significant difference in the prevalence of infection, 4.0 versus 5.4 (mean adjusted difference = 1.4%, 95% CI = −1.0% to 3.8%), nor in the prevalence of trachoma, 6.1 versus 9.0 (mean adjusted difference = 2.6%, 95% CI = −0.3% to 5.3%) comparing the usual target to the enhanced target group. There was no difference if analyzed using coverage as a continuous variable.

Conclusion

In communities that had pre-treatment prevalence of follicular trachoma of 20% or greater, there is no evidence that MDA can be stopped before 3 annual rounds, even with high coverage. Increasing coverage in children above 90% does not appear to confer additional benefit.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号