首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4441篇
  免费   389篇
  国内免费   2篇
  4832篇
  2023年   18篇
  2022年   39篇
  2021年   63篇
  2020年   37篇
  2019年   50篇
  2018年   66篇
  2017年   61篇
  2016年   120篇
  2015年   210篇
  2014年   232篇
  2013年   268篇
  2012年   364篇
  2011年   349篇
  2010年   226篇
  2009年   198篇
  2008年   246篇
  2007年   297篇
  2006年   322篇
  2005年   285篇
  2004年   255篇
  2003年   245篇
  2002年   227篇
  2001年   44篇
  2000年   50篇
  1999年   55篇
  1998年   77篇
  1997年   46篇
  1996年   37篇
  1995年   42篇
  1994年   28篇
  1993年   30篇
  1992年   30篇
  1991年   25篇
  1990年   26篇
  1989年   16篇
  1988年   13篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   14篇
  1983年   11篇
  1982年   12篇
  1981年   8篇
  1979年   10篇
  1978年   3篇
  1977年   3篇
  1975年   4篇
  1974年   5篇
  1967年   3篇
  1965年   3篇
排序方式: 共有4832条查询结果,搜索用时 15 毫秒
41.
We studied the influence of eight nonleguminous grassland plant species belonging to two functional groups (grasses and forbs) on the composition of soil denitrifier communities in experimental microcosms over two consecutive years. Denitrifier community composition was analyzed by terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified nirK gene fragments coding for the copper-containing nitrite reductase. The impact of experimental factors (plant functional group, plant species, sampling time, and interactions between them) on the structure of soil denitrifier communities (i.e., T-RFLP patterns) was analyzed by canonical correspondence analysis. While the functional group of a plant did not affect nirK-type denitrifier communities, plant species identity did influence their composition. This effect changed with sampling time, indicating community changes due to seasonal conditions and a development of the plants in the microcosms. Differences in total soil nitrogen and carbon, soil pH, and root biomass were observed at the end of the experiment. However, statistical analysis revealed that the plants affected the nirK-type denitrifier community composition directly, e.g., through root exudates. Assignment of abundant T-RFs to cloned nirK sequences from the soil and subsequent phylogenetic analysis indicated a dominance of yet-unknown nirK genotypes and of genes related to nirK from denitrifiers of the order Rhizobiales. In conclusion, individual species of nonleguminous plants directly influenced the composition of denitrifier communities in soil, but environmental conditions had additional significant effects.  相似文献   
42.

Background  

A recent study on expression and function of the ortholog of the Drosophila collier (col) gene in various arthropods including insects, crustaceans and chelicerates suggested a de novo function of col in the development of the appendage-less intercalary segment of insects. However, this assumption was made on the background of the now widely-accepted Pancrustacea hypothesis that hexapods represent an in-group of the crustaceans. It was therefore assumed that the expression of col in myriapods would reflect the ancestral state like in crustaceans and chelicerates, i.e. absence from the premandibular/intercalary segment and hence no function in its formation.  相似文献   
43.
44.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   
45.
46.
Cyanobacterial light-harvesting complexes, the phycobilisomes, are proteolytically degraded when the organisms are starved for combined nitrogen, a process referred to as chlorosis or bleaching. Gene nblA, present in all phycobilisome-containing organisms, encodes a protein of about 7 kDa that plays a key role in phycobilisome degradation. The mode of action of NblA in this degradation process is poorly understood. Here we presented the 1.8-A crystal structure of NblA from Anabaena sp. PCC 7120. In the crystal, NblA is present as a four-helix bundle formed by dimers, the basic structural units. By using pull-down assays with immobilized NblA and peptide scanning, we showed that NblA specifically binds to the alpha-subunits of phycocyanin and phycoerythrocyanin, the main building blocks of the phycobilisome rod structure. By site-directed mutagenesis, we identified amino acid residues in NblA that are involved in phycobilisome binding. The results provided evidence that NblA is directly involved in phycobilisome degradation, and the results allowed us to present a model that gives insight into the interaction of this small protein with the phycobilisomes.  相似文献   
47.
48.
N-terminal acetylation of proteins is a widespread and highly conserved process. Aminoacylase 1 (ACY1; EC 3.5.14) is the most abundant of the aminoacylases, a class of enzymes involved in hydrolysis of N-acetylated proteins. Here, we present four children with genetic deficiency of ACY1. They were identified through organic acid analyses using gas chromatography-mass spectrometry, revealing increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, leucine, glycine, valine, and isoleucine. Nuclear magnetic resonance spectroscopy analysis of urine samples detected a distinct pattern of N-acetylated metabolites, consistent with ACY1 dysfunction. Functional analyses of patients' lymphoblasts demonstrated ACY1 deficiency. Mutation analysis uncovered recessive loss-of-function or missense ACY1 mutations in all four individuals affected. We conclude that ACY1 mutations in these children led to functional ACY1 deficiency and excretion of N-acetylated amino acids. Questions remain, however, as to the clinical significance of ACY1 deficiency. The ACY1-deficient individuals were ascertained through urine metabolic screening because of unspecific psychomotor delay (one subject), psychomotor delay with atrophy of the vermis and syringomyelia (one subject), marked muscular hypotonia (one subject), and follow-up for early treated biotinidase deficiency and normal clinical findings (one subject). Because ACY1 is evolutionarily conserved in fish, frog, mouse, and human and is expressed in the central nervous system (CNS) in human, a role in CNS function or development is conceivable but has yet to be demonstrated. Thus, at this point, we cannot state whether ACY1 deficiency has pathogenic significance with pleiotropic clinical expression or is simply a biochemical variant. Awareness of this new genetic entity may help both in delineating its clinical significance and in avoiding erroneous diagnoses.  相似文献   
49.
The Spec1 and Spec2 proteins of the sea urchin Strongylocentrotus purpuratus are related to calmodulin, troponin C, and myosin light chains by sequence similarity in their four calcium binding domains. These domains, the EF-hands, are distinct helix-loop-helix structures of about 40 amino acids. The Spec1 and Spec2 genes are expressed specifically in aboral ectoderm cells of the developing embryo; however, the function of the Spec proteins in these cells is unknown. To find conserved regions of the proteins that might be important for structure and function, Spec homologues from Lytechinus pictus, a distantly related sea urchin, were sought. L. pictus embryos do not synthesize detectable amounts of the 14,000-17,000-Da Spec proteins as determined by two-dimensional gel electro-phoresis, but do synthesize three 34,000-Da proteins that cross-react with Spec1 antibodies and display a similar ontogenetic pattern of expression. cDNA clones were isolated by hybridization to a synthetic oligonucleotide corresponding to the EF-hand. One clone, LpS1, encodes an mRNA with developmental properties like those of the S. purpuratus Spec mRNAs. However, LpS1 contains an open reading frame for a protein of 34,000 Da rather than 17,000 Da, and antibodies raised against part of the LpS1 reading frame demonstrate that LpS1 encodes a 34,000-Da protein in L. pictus embryos. The sequence of LpS1 reveals the presence of eight EF-hand domains, which share structural homology with the Spec1 or Spec2 EF-hands; however, little else in the protein sequence is conserved. The results support the hypothesis that the LpS1 gene arose from a duplication of an ancestral Spec gene and that the overall structural features of the Spec family of proteins are more conserved than the amino acid sequences.  相似文献   
50.
Neumann R  Iino M 《Planta》1997,201(3):288-292
Phototropism of rice (Oryza sativa L.) coleoptiles induced by unilateral blue light was characterized using red-light-grown seedlings. Phototropic fluence-response relationships, investigated mainly with submerged coleoptiles, revealed three response types previously identified in oat and maize coleoptiles: two pulse-induced positive phototropisms and a phototropism that depended on stimulation time. The effective ranges of fluences and fluence rates were comparable to those reported for maize. Compared with oats and maize, however, curvature responses in rice were much smaller and coleoptiles straightened faster after establishing the maximal curvature. When stimulated continuously, submerged coleoptiles developed curvature slowly over a period of 6 h, whereas air-grown coleoptiles, which showed smaller phototropic responsiveness, established a photogravitropic equilibrium from about 4 h of stimulation. The plot of the equilibrium angle against log fluence rates yielded a bell-shaped optimum curve that spanned over a relatively wide fluence-rate range; a maximal curvature of 25° occurred at a fluence rate of 1 μmol · m−2 · s−1. This optimum curve apparently reflects the light sensitivity of the steady-state phototropic response. Received: 28 June 1996 / Accepted: 30 July 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号