首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   45篇
  733篇
  2022年   10篇
  2021年   11篇
  2020年   8篇
  2019年   8篇
  2018年   10篇
  2017年   10篇
  2016年   27篇
  2015年   22篇
  2014年   33篇
  2013年   46篇
  2012年   38篇
  2011年   33篇
  2010年   26篇
  2009年   16篇
  2008年   27篇
  2007年   35篇
  2006年   25篇
  2005年   26篇
  2004年   25篇
  2003年   18篇
  2002年   24篇
  2001年   15篇
  2000年   17篇
  1999年   11篇
  1998年   8篇
  1995年   7篇
  1992年   16篇
  1991年   14篇
  1990年   6篇
  1989年   14篇
  1988年   7篇
  1986年   12篇
  1985年   7篇
  1984年   14篇
  1983年   4篇
  1982年   4篇
  1980年   5篇
  1979年   7篇
  1978年   8篇
  1977年   5篇
  1976年   8篇
  1975年   4篇
  1974年   8篇
  1973年   7篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
  1966年   5篇
排序方式: 共有733条查询结果,搜索用时 0 毫秒
81.
As suspensions of cells freeze, the electrolytes and other solutes in the external solution concentrate progressively, and the cells undergo osmotic dehydration if cooling is slow. The progressive concentration of solute comes about as increasing amounts of pure ice precipitate out of solution and cause the liquid-filled channels in which the cells are sequestered to dwindle in size. The consensus has been that slow freezing injury is related to the composition of the solution in these channels and not to the amount of residual liquid. The purpose of the research reported here was to test this assumption on human erythrocytes. Ordinarily, solute concentration and the amount of liquid in the unfrozen channels are inversely coupled. To vary them independently, one must vary the initial solute concentration. Two solutes were used here: NaCl and the permeating protective additive glycerol. To vary the total initial solute concentration while holding the mass ratio of glycerol to NaCl constant, we had to allow the NaCl tonicity to depart from isotonic. Specifically, human red cells were suspended in solutions with weight ratios of glycerol to NaCl of either 5.42 or 11.26, where the concentrations of NaCl were 0.6, 0.75, 1.0, 2.0, 3.0, or 4.0 times isotonic. Samples were then frozen to various subzero temperatures, which were chosen to produce various molalities of NaCl (0.24-3.30) while holding the fraction of unfrozen water constant, or conversely to produce various unfrozen fractions (0.03-0.5) while holding the molality of salt constant. (Not all combinations of these values were possible). The following general findings emerged: (a) few cells survived the freezing of greater than 90% of the extracellular water regardless of the salt concentration in the residual unfrozen portion. (b) When the fraction of frozen water was less than 75% the majority of the cells survived even when the salt concentration in the unfrozen portion exceeded 2 molal. (c) Salt concentration affected survival significantly only when the frozen fraction lay between 75 and 90%. To find a major effect on survival of the fraction of water that remains unfrozen was unexpected. It may require major modifications in how cryobiologists view solution-effect injury and its prevention.  相似文献   
82.
The body maintains Mg(2+) homeostasis by renal and intestinal (re)absorption. However, the molecular mechanisms that mediate transepithelial Mg(2+) transport are largely unknown. Transient receptor potential melastatin 6 (TRPM6) was recently identified and shown to function in active epithelial Mg(2+) transport in intestine and kidney. To define the relationship between Mg(2+) status and TRPM6 expression, we used two models of hypomagnesemia: 1) C57BL/6J mice fed a mildly or severely Mg(2+)-deficient diet, and 2) mice selected for either low (MgL) or high (MgH) erythrocyte and plasma Mg(2+) status. In addition, the mice were subjected to a severely Mg(2+)-deficient diet. Our results show that C57BL/6J mice fed a severely Mg(2+)-deficient diet developed hypomagnesemia and hypomagnesuria and showed increased TRPM6 expression in kidney and intestine. When fed a Mg(2+)-adequate diet, MgL mice presented hypomagnesemia and hypermagnesuria, and lower kidney and intestinal TRPM6 expression, compared with MgH mice. A severely Mg(2+)-deficient diet led to hypomagnesemia and hypomagnesuria in both strains. Furthermore, this diet induced kidney TRPM6 expression in MgL mice, but not in MgH mice. In conclusion, as shown in C57BL/6J mice, dietary Mg(2+)-restriction results in increased Mg(2+) (re)absorption, which is correlated with increased TRPM6 expression. In MgL and MgH mice, the inherited Mg(2+) status is linked to different TRPM6 expression. The MgL and MgH mice respond differently to a low-Mg(2+) diet with regard to TRPM6 expression in the kidney, consistent with genetic factors contributing to the regulation of cellular Mg(2+) levels. Further studies of these mice strains could improve our understanding of the genetics of Mg(2+) homeostasis.  相似文献   
83.
VISUALIZATION OF FREEZING DAMAGE   总被引:5,自引:0,他引:5       下载免费PDF全文
Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (~7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.  相似文献   
84.
This study deals with isolation of rat hepatocytes by a non-enzymatic method and the separation of intact and damaged cells in sucrose medium. Low speed centrifugation in isotonic sucrose medium of a hepatocyte suspension obtained by mechanical desaggregation of liver pre-perfused with EDTA solution results in the formation of a cell pellet which contains two different layers. A darker layer contains hepatocytes with intact plasma membranes. Their respiratory activity and xenobiotic metabolism are close to those of the cells isolated by collagenase perfusion. The study of distribution of lipophilic cation tetraphenylphosphonium (TPP+) indicates a predominantly mitochondrial localization of TPP+ in the intact cells following non-enzymatic and collagenase isolation. Hepatocytes in the upper layer have damaged plasma membranes. As a result they lose the potential to accumulate TPP+, and have low rates of endogenous respiration and biotransformation activity. Addition of exogenous NADPH restores the capability to metabolize xenobiotics. Washing and incubation of these hepaticytes in an intracellular type medium results in restoration of uncoupler-stimulated oxygen consumption and generation of membrane potential in the presence of a succinate substrate. These properties are close to those of hepatocytes permeabilized by digitonin treatment. Thus, the procedure allows the simultaneous isolation of both intact and permeabilized hepatocytes with functionally active intracellular structures without the use of relatively expensive chemicals such as collagenase and Percoll.Abbreviations 4-OHBP 4-hydroxybiphenyl - BP biphenyl - BSA bovine serum albumin - DNP 2,4-dinitrophenol - EDTA ethylendiamintetraacetate - NADPH nicotinamide adenine dinucleotide phosphate reduced - p-NA p-nitroanisole - p-NPh p-nitrophenol - TPP+ tetraphenylphosphonium  相似文献   
85.
Proliferation of mammalian cells can be controlled by low cultivation temperature. However, depending on cell type and expression system, varying effects of a temperature shift on heterologous protein production have been reported. Here, we characterize growth behavior and productivity of the Chinese hamster ovary (CHO) cell line XM111-10 engineered to synthesize the model-product-secreted alkaline phosphatase (SEAP). Shift of cultivation temperature from 37 degrees C to 30 degrees C caused a growth arrest mainly in the G1 phase of the cell cycle concomitant with an up to 1.7-fold increase of specific productivity. A low temperature cultivation provided 3.4 times higher overall product yield compared to a standard cultivation at 37 degrees C. The cellular and molecular mechanisms underlying the effects of low temperature on growth and productivity of mammalian cells are poorly understood. Separation of total protein extracts by two-dimensional gel electrophoresis showed altered expression levels of CHO-K1 proteins after decrease in cultivation temperature to 30 degrees C. These changes in the proteome suggest that mammalian cells respond actively to low temperature by synthesizing specific cold-inducible proteins. In addition, we provide the first evidence that the cold response of mammalian cells includes changes in postranslational protein modifications. Two CHO proteins were found to be phosphorylated at tyrosine residues following downshift of cultivation temperature to 30 degrees C. Elucidating cellular events during cold exposure is necessary for further optimization of host-cell lines and expression systems and can provide new strategies for metabolic engineering.  相似文献   
86.
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development.In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.  相似文献   
87.
Mi?osz A. Mazur 《ZooKeys》2016,(554):87-118
The genus Rasilinus gen. n. is described (type species Rasilinus tchambicus sp. n.). Nine new species: Rasilinus bicolor sp. n., Rasilinus bifurcatus sp. n., Rasilinus bimaculatus sp. n., Rasilinus grandidens sp. n., Rasilinus longulus sp. n., Rasilinus subgemellus sp. n., Rasilinus subnodulus sp. n., Rasilinus tchambicus sp. n., Rasilinus virgatus sp. n. are described from New Caledonia. Illustrations of the external morphology, male and female terminalia, dorsal habitus colour photographs of the adults, key to species and distribution map of the new genus Rasilinus are provided.  相似文献   
88.
89.
Quantitative in vitro antibacterial activities, i.e., minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), of 12 -lactam antibiotics against Agrobacterium tumefaciens strains LBA4404 and EHA101 were examined, in order to identify antibiotics effective in eliminating the bacteria in Agrobacterium-mediated plant genetic transformation. The antibacterial activities of -lactams tested against strain EHA101 were equal to or less than those tested against strain LBA4404. Cefotaxime, cefbuperazone, and meropenem had high activities against strain LBA4404 (MBC <1 mg l–1). Against strain EHA101, however, only meropenem showed activity comparable to that against strain LBA4404. The production of -lactamase was observed only in strain EHA101.Abbreviations CFU Colony-forming unit - MBC Minimum bactericidal concentration - MIC Minimum inhibitory concentration - PBP Penicillin-binding protein  相似文献   
90.
Isothiocyanates (ITC) are well-known chemopreventive agents extracted from vegetables. This activity results from the activation of human oxidoreductase. In this letter, the uncompetitive activatory mechanism of ITC was investigated using docking and molecular dynamics simulations. This indicates that NAD(P)H:quinone oxidoreductase can efficiently improve enzyme-substrate recognition within the catalytic site if the ITC activator supports the interaction in the uncompetitive binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号