首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   14篇
  2015年   13篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
排序方式: 共有109条查询结果,搜索用时 687 毫秒
31.
32.
Somatostatin (SST) analogues have aroused the interest of scientists for years. This group of compounds is used in the diagnosis and treatment of neuroendocrine tumors. However, new molecules useful as radiopharmaceuticals in targeted therapy are still searched for. Bicyclic peptides seem to be very interesting in this context. These molecules are associated with beneficial properties. In this work, we present studies on the binding ability of the bicyclic analogue of somatostatin toward Cu(II) ions which could potentially be a chelator for copper radionuclides. The research is focused on the analysis of Cu(II) interactions with the metal binding cycle of the ligand and the influence of the receptor binding site on the coordination process. This is a novelty in comparison to the SST analogues used in medicine, where a metal ion is coordinated by a chelator and connected with a bioactive molecule by the linker. In this work, we present the first coordination study for a bicyclic ligand. The obtained results showed that the complexes with only imidazole donors are characterized by significantly higher stability in comparison to the other peptides.  相似文献   
33.
Nuclear localization of β-catenin is a hallmark of canonical Wnt signaling, a pathway that plays a crucial role in brain development and the neurogenesis of the adult brain. We recently showed that β-catenin accumulates specifically in mature thalamic neurons, where it regulates the expression of the Ca(v)3.1 voltage-gated calcium channel gene. Here, we investigated the mechanisms underlying β-catenin accumulation in thalamic neurons. We report that a lack of soluble factors produced either by glia or cortical neurons does not impair nuclear β-catenin accumulation in thalamic neurons. We next found that the number of thalamic neurons with β-catenin nuclear localization did not change when the Wnt/Dishevelled signaling pathway was inhibited by Dickkopf1 or a dominant negative mutant of Dishevelled3. These results suggest a WNT-independent cell-autonomous mechanism. We found that the protein levels of APC, AXIN1, and GSK3β, components of the β-catenin degradation complex, were lower in the thalamus than in the cortex of the adult rat brain. Reduced levels of these proteins were also observed in cultured thalamic neurons compared with cortical cultures. Finally, pulse-chase experiments confirmed that cytoplasmic β-catenin turnover was slower in thalamic neurons than in cortical neurons. Altogether, our data indicate that the nuclear localization of β-catenin in thalamic neurons is their cell-intrinsic feature, which was WNT-independent but associated with low levels of proteins involved in β-catenin labeling for ubiquitination and subsequent degradation.  相似文献   
34.
Plant-assisted bioremediation (rhizoremediation) stands out as a potential tool to inactivate or completely remove xenobiotics from the polluted environment. Therefore, it is of key importance to find an adequate combination of plant species and microorganisms that together enhance the clean-up process. To understand the response of plants upon bioaugmentation, the antioxidative and detoxification system was analyzed in high and low erucic acid rapeseed varieties (HEAR and LEAR, respectively), after 8 weeks of their treatment with petroleum degraders and 6000 mg diesel oil/kg dry soil. The oxidative stress was enhanced in LEAR being exposed to sole diesel oil, in comparison with HEAR. However, when LEAR plants were additionally inoculated with bacteria, suppression of total catalase (CAT) and ascorbate peroxidase (APX) activity were observed. Interestingly, glutathione transferase (GST) activity was found in these plants at a much higher level than in HEAR, which correlated with a more efficient diesel removal performed by LEAR in the polluted soil and upon bioaugmentation. A distinct profile of polycyclic aromatic hydrocarbons (PAH) was detected in leaves of these plants. Neither LEAR nor HEAR experienced any changes in the photosynthetic capacity upon diesel pollution and presence of petroleum degraders, which supports the usefulness of rhizoremediation with rapeseed.  相似文献   
35.
Stomatal movement and density influence plant water use efficiency and thus biomass production. Studies in model plants within controlled environments suggest MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) may be crucial for stomatal regulation. We present functional analysis of MPK4 for hybrid aspen (Populus tremula × tremuloides) grown under natural field conditions for several seasons. We provide evidence of the role of MPK4 in the genetic and environmental regulation of stomatal formation, differentiation, signaling, and function; control of the photosynthetic and thermal status of leaves; and growth and acclimation responses. The long-term acclimation manifested as variations in stomatal density and distribution. Short-term acclimation responses were derived from changes in the stomatal aperture. MPK4 localized in the cytoplasm of guard cells (GCs) was a positive regulator of abscisic acid (ABA)-dependent stomatal closure and nitric oxide metabolism in the ABA-dependent pathways, while to a lesser extent, it was involved in ABA-induced hydrogen peroxide accumulation. MPK4 also affected the stomatal aperture through deregulation of microtubule patterns and cell wall structure and composition, including via pectin methyl-esterification, and extensin levels in the GC wall. Deregulation of leaf anatomy (cell compaction) and stomatal movement, together with increased light energy absorption, resulted in altered leaf temperature, photosynthesis, cell death, and biomass accumulation in mpk4 transgenic plants. Divergence between absorbed energy and assimilated energy is a bottleneck, and MPK4 can participate in the control of energy dissipation (thermal effects). Furthermore, MPK4 can participate in balancing the photosynthetic energy distribution via its effective use in growth or redirection to acclimation/defense responses.

MITOGEN-ACTIVATED PROTEIN KINASE 4 plays a multilevel role in stomatal formation, function, and signaling in the photosynthetic and thermal status of leaves and in growth and acclimation responses.  相似文献   
36.
Nontemplated 3'-end oligouridylation of RNA occurs in many species, including humans. Unlike the familiar phenomenon of polyadenylation, nontemplated addition of uridines to RNA is poorly characterized in higher eukaryotes. Recent studies have reported nontemplated 3'-end oligouridylation of small RNAs and mRNAs. Oligouridylation is involved in many aspects of microRNA biology from biogenesis to turnover of the mature species, and it may also mark long mRNAs for degradation by promoting decapping of the protective 5'-cap structure. To determine the prevalence of oligouridylation in higher eukaryotes, we used next-generation sequencing technology to deeply examine the population of small RNAs in human cells. Our data revealed widespread nontemplated nucleotide addition to the 3' ends of many classes of RNA, with short stretches of uridine being the most frequently added nucleotide.  相似文献   
37.
Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1–20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density—OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 μmol/L CH4/mL/day.  相似文献   
38.
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans—a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)—to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.  相似文献   
39.
40.
To survive exposure to space conditions, organisms should have certain characteristics including a high tolerance for freezing, radiation and desiccation. The organisms with the best chance for survival under such conditions are extremophiles, like some species of Bacteria and Archea, Rotifera, several species of Nematoda, some of the arthropods and Tardigrada (water bears). There is no denying that tardigrades are one of the toughest animals on our planet and are the most unique in the extremophiles group. Tardigrada are very small animals (50 to 2,100 μm in length), and they inhabit great number of Earth environments. Ever since it was proven that tardigrades have high resistance to the different kinds of stress factors associated with cosmic journeys, combined with their relatively complex structure and their relative ease of observation, they have become a perfect model organism for space research. This taxon is now the focus of astrobiologists from around the world. Therefore, this paper presents a short review of the space research performed on tardigrades as well as some considerations for further studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号