首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8969篇
  免费   769篇
  国内免费   3篇
  2022年   75篇
  2021年   128篇
  2020年   91篇
  2019年   109篇
  2018年   117篇
  2017年   112篇
  2016年   176篇
  2015年   278篇
  2014年   302篇
  2013年   384篇
  2012年   465篇
  2011年   502篇
  2010年   291篇
  2009年   247篇
  2008年   400篇
  2007年   440篇
  2006年   410篇
  2005年   392篇
  2004年   383篇
  2003年   333篇
  2002年   379篇
  2001年   190篇
  2000年   165篇
  1999年   169篇
  1998年   116篇
  1997年   106篇
  1996年   104篇
  1995年   90篇
  1994年   96篇
  1993年   88篇
  1992年   143篇
  1991年   106篇
  1990年   109篇
  1989年   108篇
  1988年   94篇
  1987年   89篇
  1986年   75篇
  1985年   103篇
  1984年   102篇
  1983年   88篇
  1982年   101篇
  1981年   77篇
  1980年   92篇
  1979年   80篇
  1978年   78篇
  1977年   73篇
  1976年   66篇
  1974年   67篇
  1972年   72篇
  1970年   66篇
排序方式: 共有9741条查询结果,搜索用时 15 毫秒
121.
System level effects exhibited by a population subjected to a chronic or an acute dose of toxicant are the emphasis of this study. A three dimensional model of a toxicant and a population, with state variables (the population biomass, the concentration of toxicant in an organism, and the concentration of toxicant in the environment) coupled by a linear dose-response function, is analyzed analytically. One of the main results presents sufficient conditions, in terms of a system level parameter, for the persistence, and for the extinction, of a population exposed to a chronic dose of toxicant. When depuration and degradation are negligible processes, the effects of toxicant accumulation associated with an acute exposure of a population are analyzed in some detail. Both persistence and extinction are shown to be viable behavior modes of a population in this biochemical setting.  相似文献   
122.
Summary Substitution of extracellular Na+ by Li+ causes depression of junctional membrane permeability inChironomus salivary gland cells; within 3 hr, permeability falls to so low a level that neither fluorescein nor the smaller inorganic ions any longer traverse the junctional membrane in detectable amounts (uncoupling). The effect is Li-specific: if choline+ is the Na+ substitute, coupling is unchanged. The Li-produced uncoupling is not reversed by restitution of Na+. Long-term exposure (>1 hr) of the cells to Ca, Mg-free medium leads also to uncoupling. This uncoupling is fully reversible by early restitution of Ca++ or Mg++. Coupling is maintained in the presence of either Ca++ or Mg++, so long as the total divalent concentration is about 12mm. The uncoupling in Ca, Mg-free medium ensues regardless of whether the main monovalent cation is Na, Li or choline.The uncouplings are accompanied by cell depolarization. Repolarization of the cells by inward current causes restoration of coupling; the junctional conductance rises again to its normal level. The effect was shown for Li-produced uncoupling, for uncoupling by prolonged absence of external Ca++ and Mg++, and for uncoupling produced by dinitrophenol. In all cases, the recoupling has the same features: (1) it develops rapidly upon application of the polarizing current; (2) it is cumulative; (3) it is transient, but outlasts the current; and (4) it appears not to depend on the particular ions carrying the current from the electrodes to the cell. The recoupling is due to repolarization of nonjunctional cell membrane; recoupling can be produced at zero net currernt through the junctional membrane. Recoupling takes place also as a result of chemically produced repolarization; restoration of theK gradients in uncoupled cells causes partial recoupling during the repolarization phase.An explanation of the results on coupling is proposed in terms of known mechanisms of regulation of Ca++ flux in cells. The uncouplings are explained by actions raising the Ca++ level in the cytoplasmic environment of the junctional membranes; the recoupling is explained by actions lowering this Ca++ level.  相似文献   
123.
124.
125.
126.
127.
128.
129.
Ionic channels are discrete sites at which the passive movement of ions takes place during nervous excitation. Three types of channels are distinguished. 1. Leakage channels that are permanently open to various cations. 2. Na channels that open promptly on depolarization but slowly close again (inactivate) on sustained depolarization and that are predominantly permeable to Na+ ions. 3. K channels that on depolarization open after some delay but stay open and that are mainly passed by K+ ions. The selectivity sequence of the Na channels of the squid axon (or frog nerve) is as follows: Na+ ≈ Li+>(T1+)>NH+ 4?K+> Rb+, Cs+; that of K channels is: (T1+)>K+>Rb+>NH+ 4?Na+, Cs+, Na channels are selectively blocked by tetrodotoxin (TTX) or saxitoxin (STX), K channels by tetraethylammonium ions (TEA). Either channel type is reversibly blocked when one drug molecule binds to one site per channel, the equilibrium dissociation constant of these reactions being about 3×10?9 MTTX (or STX) and 4×10?4 M TEA, respectively. Because of their specificity and high affinity, TTX and STX are used to “titrate” the Na channels whose density appears to be of the order of 100/Μm2. The “gates” of the channels operate as a function of potential and time but independent of the permeating ion species. Drugs (e.g. veratridine) and enzymes (e.g. pronase, applied intraaxonally) cause profound changes in the gating function of the Na channels without influencing their selectivity. This points to separate structures for gating and ion discrimination. The latter is thought to be, in part, brought about by a “selectivity filter” of which detailed structural ideas exist. Recent experiments suggest that the gates of the Na channels are controlled by charged particles moving within the membrane under the influence of the electrical field.  相似文献   
130.
NUCLEAR SHAPE IN MUSCLE CELLS   总被引:7,自引:4,他引:3       下载免费PDF全文
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号