首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6487篇
  免费   628篇
  国内免费   2篇
  2021年   47篇
  2018年   62篇
  2017年   62篇
  2016年   94篇
  2015年   149篇
  2014年   166篇
  2013年   232篇
  2012年   275篇
  2011年   293篇
  2010年   190篇
  2009年   159篇
  2008年   265篇
  2007年   309篇
  2006年   313篇
  2005年   293篇
  2004年   328篇
  2003年   266篇
  2002年   298篇
  2001年   147篇
  2000年   123篇
  1999年   117篇
  1998年   99篇
  1997年   93篇
  1996年   95篇
  1995年   88篇
  1994年   82篇
  1993年   89篇
  1992年   119篇
  1991年   94篇
  1990年   94篇
  1989年   95篇
  1988年   85篇
  1987年   82篇
  1986年   66篇
  1985年   83篇
  1984年   96篇
  1983年   70篇
  1982年   87篇
  1981年   76篇
  1980年   91篇
  1979年   71篇
  1978年   64篇
  1977年   70篇
  1976年   62篇
  1975年   61篇
  1974年   57篇
  1973年   63篇
  1972年   57篇
  1971年   52篇
  1970年   53篇
排序方式: 共有7117条查询结果,搜索用时 31 毫秒
131.
132.
The stratified squamous epithelium of the oral gingiva and the hard palate is characterized by a tissue architecture and a cytoskeletal composition similar to, although not identical with, that of the epidermis and fundamentally different from that of the adjacent non-masticatory oral mucosa. Using immunocytochemistry with antibodies specific for individual cytokeratins, in situ hybridization and Northern blots of RNA with riboprobes specific for individual cytokeratin mRNAs, and gel electrophoresis of cytoskeletal proteins of microdissected biopsy tissue samples, we show changes in the pattern of expression of cytokeratins and their corresponding mRNAs in pathologically altered oral gingiva. Besides a frequently, although not consistently, observed increase in the number of cells producing cytokeratins 4 and 13 (which are normally found as abundant components in the sulcular epithelium and the alveolar mucosa but not in the oral gingiva) and a reduction in the number of cells producing cytokeratins 1, 10 and 11, the most extensive change was noted for cytokeratin 19, a frequent cytokeratin in diverse one-layered and complex epithelia. While in normal oral gingiva cytokeratin 19 is restricted to certain, sparsely scattered cells of --or near--the basal cell layer, probably neuroendocrine (Merkel) cells, in altered tissue of inflamed samples it can appear in larger regions of the basal cell layer(s) and, in apparently more advanced stages, also in a variable number of suprabasal cells. Specifically, our in situ hybridization experiments show that this altered suprabasal cytokeratin 19 expression is more extended at the mRNA than at the protein level, indicating that cytokeratin 19 mRNA synthesis may be a relatively early event during the alteration. These changes in cytokeratin expression under an external pathological influence are discussed in relation to other factors known to contribute to the expression of certain cytokeratins and with respect to changes occurring during dysplasia and malignant transformation of oral epithelia.  相似文献   
133.
Summary Genotyping of mitochondrial aldehyde dehydrogenase (ALDH I) was performed in enzymatically amplified DNA of 20 Chinese, Japanese and South Korean families (85 individuals) and in 113 unrelated persons by employing allele-specific oligonucleotide probes and dot blot hybridization. Genotyping individuals with phenotypic deficiency of ALDH I activity always showed the presence of at least one mutant allele. The data are compatible with a model assuming dominant inheritance of the mutant allele, which we have previously suggested on the basis of a population study.  相似文献   
134.
Summary Two 46,XY females with tandem duplications of an X short arm segment were studied by cytogenetic and Southern blot analysis. The results show that the duplicated segment in each case included the Xp21.2–Xp22.2 interval, resulting in a double dose of ZFX on the single active X chromosome. The results from our two cases, in conjunction with those reported by other workers, lead us to conclude that the duplication is the reason for the sex inversion. If ZFY and ZFX are indeed sex-determining gene loci, these findings favour a model of sex determination characterized by antagonistic interaction between these genes.  相似文献   
135.
136.
The protamines are small, arginine-rich nuclear proteins that replace histones and transition proteins late in the haploid phase of spermatogenesis in mammals. The two mouse genes encoding protamines--Prm-1 and Prm-2--have been molecularly cloned and mapped to mouse chromosome 16 (MMU 16). A cDNA clone of mouse Prm-1 that hybridized to the corresponding human gene was used to analyze a panel of somatic cell hybrids made between human lymphoblasts and the E36 hamster cell line. The human gene, which we have designated PRM 1, was syntenic with human chromosome 16 (HSA 16) and discordant with all other human chromosomes. Linkage analysis in the mouse was accomplished using the backcross (Czech II x BALB/c Pt) x Czech II to map Prm-1 and Prm-2 to a position near the 5' terminus of MMU 16. No recombination between Prm-1 and Prm-2 was observed among 89 progeny of the Czech II x BALB/c cross or among 94 progeny of the backcross (CBA/J x BALB/cJ) x BALB/cJ, demonstrating that the two loci are separated by less than 1.6 cM on MMU 16. This tight linkage may be of functional significance, as Prm-1 and Prm-2 are among a limited number of genes known to be expressed postmeiotically in male haploid germ cells.  相似文献   
137.
Summary An isozyme survey of 34 species of Prunus representing subgenera Prunus, Amygdalus, Cerasus, and Lithocerasus detected 110 presumptive alleles at 11 isozyme loci. Principal component analysis was conducted on the covariance matrix derived from allelic frequencies calculated for each species. Cluster analysis was performed on the first 30 principal components. Results generally support traditional classification of Prunus at the subgeneric level, except for members of subgenus Lithocerasus and two members of subgenus Amygdalus. Prunus glandulosa Thunb., P. japonica Thunb., and P. tomentosa Thunb. of subgenus Lithocerasus and P. triloba Lindl. of subgenus Amygdalus appear to represent primitive species. P. besseyi Bailey and P. pumila L. of subgenus Lithocerasus and P. andersonii of subgenus Amygdalus should be assigned to subgenus Prunus. Placement of its members indicates that subgenus Lithocerasus is an artificial grouping of species that are very different genetically although similar phenotypically.Paper No. 12529 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA  相似文献   
138.
Type X collagen is a homotrimeric, short chain, nonfibrillar collagen that is expressed exclusively by hypertrophic chondrocytes at the sites of endochondral ossification. The distribution and pattern of expression of the type X collagen gene (COL10A1) suggests that mutations altering the structure and synthesis of the protein may be responsible for causing heritable forms of chondrodysplasia. We investigated whether mutations within the human COL10A1 gene were responsible for causing the disorders achondroplasia, hypochondroplasia, pseudoachondroplasia, and thanatophoric dysplasia, by analyzing the coding regions of the gene by using PCR and the single-stranded conformational polymorphism technique. By this approach, seven sequence changes were identified within and flanking the coding regions of the gene of the affected persons. We demonstrated that six of these sequence changes were not responsible for causing these forms of chondrodysplasia but were polymorphic in nature. The sequence changes were used to demonstrate discordant segregation between the COL10A1 locus and achondroplasia and pseudoachondroplasia, in nuclear families. This lack of segregation suggests that mutations within or near the COL10A1 locus are not responsible for these disorders. The seventh sequence change resulted in a valine-to-methionine substitution in the carboxyl-terminal domain of the molecule and was identified in only two hypochondroplasic individuals from a single family. Segregation analysis in this family was inconclusive, and the significance of this substitution remains uncertain.  相似文献   
139.
The sorption and desorption of water in rape seeds was measured. From the sorption isotherm it follows that for water content greater than about 6% the water molecules tend to form clusters. The mutual diffusion coefficient of water into and out of the seeds was determined from the time dependence of sorption and desorption. There is a pronounced hysteresis in the sorption-desorption process, desorption proceeds faster than sorption. The self-diffusion of water (at maximum humidity of the seeds) and oil within the seeds was investigated by the pulsed field gradient NMR. The measurement of oil self-diffusion shows restricted diffusion of the oil within droplets and allows the determination of the droplet radii and their distribution width.  相似文献   
140.
D-Lactate dehydrogenase from the extreme halophilic archaebacterium Halobacterium marismortui has been partially purified by ammonium-sulfate fractionation, hydrophobic and ion exchange chromatography. Catalytic activity of the enzyme requires salt concentrations beyond 1M NaCl: optimum conditions are 4M NaCl or KCl, pH 6-8, 50 degrees C. Michaelis constants for NADH and pyruvate under optimum conditions of enzymatic activity are 0.070 and 4.5mM, respectively. As for other bacterial D-specific lactate dehydrogenases, fructose 1,6-bisphosphate and divalent cations (Mg2+, Mn2+) do not affect the catalytic activity of the enzyme. As shown by gel-filtration and ultracentrifugal analysis, the enzyme under the conditions of the enzyme assay is a dimer with a subunit molecular mass close to 36 kDa. At low salt concentrations (less than 1M), as well as high concentrations of chaotropic solvent components and low pH, the enzyme undergoes reversible deactivation, dissociation and denaturation. The temperature dependence of the enzymatic activity shows non-linear Arrhenius behavior with activation energies of the order of 90 and 25 kJ/mol at temperatures below and beyond ca. 30 degrees C. In the presence of high salt, the enzyme exhibits exceptional thermal stability; denaturation only occurs at temperatures beyond 55 degrees C. The half-time of deactivation at 70 and 75 degrees C is 300 and 15 min, respectively. Maximum stability is observed at pH 7.5-9.0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号