首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57948篇
  免费   4602篇
  国内免费   4562篇
  67112篇
  2024年   147篇
  2023年   792篇
  2022年   1862篇
  2021年   3064篇
  2020年   2086篇
  2019年   2506篇
  2018年   2354篇
  2017年   1810篇
  2016年   2547篇
  2015年   3634篇
  2014年   4392篇
  2013年   4440篇
  2012年   5291篇
  2011年   4766篇
  2010年   2885篇
  2009年   2601篇
  2008年   2947篇
  2007年   2642篇
  2006年   2267篇
  2005年   1895篇
  2004年   1517篇
  2003年   1421篇
  2002年   1080篇
  2001年   910篇
  2000年   889篇
  1999年   810篇
  1998年   499篇
  1997年   454篇
  1996年   478篇
  1995年   422篇
  1994年   415篇
  1993年   327篇
  1992年   447篇
  1991年   325篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   125篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo(-)) in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo(-) polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase.  相似文献   
973.
974.
Chen W  Yang B  Zhou H  Sun L  Dou J  Qian H  Huang W  Mei Y  Han J 《Peptides》2011,32(12):2497-2503
Cathelicidin-BF15 (BF-15) is a 15-mer peptide derived from Cathelicidin-BF (BF-30), which is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Since BF-15 retains most part of the antimicrobial activity of BF-30 but has significantly reduced haemolytic activity and a much shorter sequence length (and less cost), it is a particularly attractive template around which to design novel antimicrobial peptides. However, the structure–activity relationship of it is still unknown. We designed and synthesized a series of C-terminal amidated analogs of BF-15 based on its amphipathic α-helix structure. And we characterized their antimicrobial potency and haemolytic activity. We identified the amidated BF-15 (analog B1) with potent antimicrobial activity against several antibiotic-resistant bacteria (MICs between 1 and 64 μg/mL, 2–16-folds higher than BF-30) and much lower haemolytic activity. The subsequent circular dichroism study results showed a typical α-helix pattern of analog B1 and the content of the α-helix structure of it increased significantly comparing with BF-30, which indicates the peptide sequence of BF-15 may provide a major contribution to the α-helix content of the whole BF-30 sequence. The peptide induced chaotic membrane morphology and cell debris as determined by electron microscopy. This suggests that the antimicrobial activity of B1 is based on cytoplasmic membrane permeability. Taken together, our results suggested that peptide B1 should be considered as an excellent candidate for developing therapeutic drugs.  相似文献   
975.
976.
977.
978.
Ye X  Liu Z  Hemida MG  Yang D 《PloS one》2011,6(6):e21215

Background

Myocarditis is the major heart disease in infants and young adults. It is very commonly caused by coxsackievirus B3 (CVB3) infection; however, no specific treatment or vaccine is available at present. RNA interference (RNAi)-based anti-viral therapy has shown potential to inhibit viral replication, but this strategy faces two major challenges; viral mutational escape from drug suppression and targeted delivery of the reagents to specific cell populations.

Methodology/Principal Findings

In this study, we designed artificial microRNAs (AmiRs) targeting the 3′untranslated region (3′UTR) of CVB3 genome with mismatches to the central region of their targeting sites. Antiviral evaluation showed that AmiR-1 and AmiR-2 reduced CVB3 (Kandolf and CG strains) replication approximately 100-fold in both HeLa cells and HL-1 cardiomyoctes. To achieve specific delivery, we linked AmiRs to the folate-conjugated bacterial phage packaging RNA (pRNA) and delivered the complexes into HeLa cells, a folate receptor positive cancer cells widely used as an in vitro model for CVB3 infection, via folate-mediated specific internalization. We found that our designed pRNA-AmiRs conjugates were tolerable to target mutations and have great potential to suppress viral mutational escape with little effect on triggering interferon induction.

Conclusion/Significance

This study provides important clues for designing AmiRs targeting the 3′UTR of viral genome. It also proves the feasibility of specific deliver of AmiRs using conjugated pRNA vehicles. These small AmiRs combined with pRNA-folate conjugates could form a promising system for antiviral drug development.  相似文献   
979.
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI +] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI +] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI +].  相似文献   
980.
Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106+cells and CD106cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106+CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106+CV-MSCs expressed more cytokines than CD106CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号