全文获取类型
收费全文 | 57948篇 |
免费 | 4602篇 |
国内免费 | 4562篇 |
专业分类
67112篇 |
出版年
2024年 | 147篇 |
2023年 | 792篇 |
2022年 | 1862篇 |
2021年 | 3064篇 |
2020年 | 2086篇 |
2019年 | 2506篇 |
2018年 | 2354篇 |
2017年 | 1810篇 |
2016年 | 2547篇 |
2015年 | 3634篇 |
2014年 | 4392篇 |
2013年 | 4440篇 |
2012年 | 5291篇 |
2011年 | 4766篇 |
2010年 | 2885篇 |
2009年 | 2601篇 |
2008年 | 2947篇 |
2007年 | 2642篇 |
2006年 | 2267篇 |
2005年 | 1895篇 |
2004年 | 1517篇 |
2003年 | 1421篇 |
2002年 | 1080篇 |
2001年 | 910篇 |
2000年 | 889篇 |
1999年 | 810篇 |
1998年 | 499篇 |
1997年 | 454篇 |
1996年 | 478篇 |
1995年 | 422篇 |
1994年 | 415篇 |
1993年 | 327篇 |
1992年 | 447篇 |
1991年 | 325篇 |
1990年 | 284篇 |
1989年 | 260篇 |
1988年 | 210篇 |
1987年 | 194篇 |
1986年 | 176篇 |
1985年 | 154篇 |
1984年 | 115篇 |
1983年 | 125篇 |
1982年 | 81篇 |
1981年 | 45篇 |
1980年 | 51篇 |
1979年 | 63篇 |
1976年 | 46篇 |
1974年 | 54篇 |
1973年 | 45篇 |
1972年 | 53篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo(-)) in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo(-) polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase. 相似文献
973.
974.
Cathelicidin-BF15 (BF-15) is a 15-mer peptide derived from Cathelicidin-BF (BF-30), which is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Since BF-15 retains most part of the antimicrobial activity of BF-30 but has significantly reduced haemolytic activity and a much shorter sequence length (and less cost), it is a particularly attractive template around which to design novel antimicrobial peptides. However, the structure–activity relationship of it is still unknown. We designed and synthesized a series of C-terminal amidated analogs of BF-15 based on its amphipathic α-helix structure. And we characterized their antimicrobial potency and haemolytic activity. We identified the amidated BF-15 (analog B1) with potent antimicrobial activity against several antibiotic-resistant bacteria (MICs between 1 and 64 μg/mL, 2–16-folds higher than BF-30) and much lower haemolytic activity. The subsequent circular dichroism study results showed a typical α-helix pattern of analog B1 and the content of the α-helix structure of it increased significantly comparing with BF-30, which indicates the peptide sequence of BF-15 may provide a major contribution to the α-helix content of the whole BF-30 sequence. The peptide induced chaotic membrane morphology and cell debris as determined by electron microscopy. This suggests that the antimicrobial activity of B1 is based on cytoplasmic membrane permeability. Taken together, our results suggested that peptide B1 should be considered as an excellent candidate for developing therapeutic drugs. 相似文献
975.
976.
977.
978.
Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA 总被引:2,自引:0,他引:2
Background
Myocarditis is the major heart disease in infants and young adults. It is very commonly caused by coxsackievirus B3 (CVB3) infection; however, no specific treatment or vaccine is available at present. RNA interference (RNAi)-based anti-viral therapy has shown potential to inhibit viral replication, but this strategy faces two major challenges; viral mutational escape from drug suppression and targeted delivery of the reagents to specific cell populations.Methodology/Principal Findings
In this study, we designed artificial microRNAs (AmiRs) targeting the 3′untranslated region (3′UTR) of CVB3 genome with mismatches to the central region of their targeting sites. Antiviral evaluation showed that AmiR-1 and AmiR-2 reduced CVB3 (Kandolf and CG strains) replication approximately 100-fold in both HeLa cells and HL-1 cardiomyoctes. To achieve specific delivery, we linked AmiRs to the folate-conjugated bacterial phage packaging RNA (pRNA) and delivered the complexes into HeLa cells, a folate receptor positive cancer cells widely used as an in vitro model for CVB3 infection, via folate-mediated specific internalization. We found that our designed pRNA-AmiRs conjugates were tolerable to target mutations and have great potential to suppress viral mutational escape with little effect on triggering interferon induction.Conclusion/Significance
This study provides important clues for designing AmiRs targeting the 3′UTR of viral genome. It also proves the feasibility of specific deliver of AmiRs using conjugated pRNA vehicles. These small AmiRs combined with pRNA-folate conjugates could form a promising system for antiviral drug development. 相似文献979.
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI
+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI
+] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI
+]. 相似文献
980.
Zhou Xin Yang Zhi-Bo Han Yue Ru Ji You Wei Wang Lu Liang Ying Chi Shao Guang Yang Li Na Li Wei Feng Luo Jian Ping Li Dan Dan Chen Wen Jing Du Xiao Cang Cao Guang Sheng Zhuo Tao Wang Zhong Chao Han 《PloS one》2013,8(3)
Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106+cells and CD106−cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106+CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106+CV-MSCs expressed more cytokines than CD106−CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs. 相似文献