首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15777篇
  免费   1382篇
  国内免费   1616篇
  18775篇
  2024年   37篇
  2023年   222篇
  2022年   577篇
  2021年   868篇
  2020年   655篇
  2019年   749篇
  2018年   714篇
  2017年   526篇
  2016年   674篇
  2015年   999篇
  2014年   1153篇
  2013年   1278篇
  2012年   1529篇
  2011年   1291篇
  2010年   792篇
  2009年   760篇
  2008年   821篇
  2007年   695篇
  2006年   605篇
  2005年   551篇
  2004年   396篇
  2003年   397篇
  2002年   359篇
  2001年   243篇
  2000年   208篇
  1999年   238篇
  1998年   134篇
  1997年   145篇
  1996年   137篇
  1995年   121篇
  1994年   116篇
  1993年   88篇
  1992年   96篇
  1991年   74篇
  1990年   82篇
  1989年   61篇
  1988年   58篇
  1987年   43篇
  1986年   50篇
  1985年   50篇
  1984年   33篇
  1983年   21篇
  1982年   22篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   6篇
  1977年   12篇
  1976年   9篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
851.
An open‐circuit voltage (Voc) of 1.57 V under simulated AM1.5 sunlight in planar MAPbBr3 solar cells with carbon (graphite) electrodes is obtained. The hole‐transport‐material‐free MAPbBr3 solar cells with the normal architecture (FTO/TiO2/MAPbBr3/carbon) show little hysteresis during current–voltage sweep under simulated AM1.5 sunlight. A solar‐to‐electricity power conversion efficiency of 8.70% is achieved with the champion device. Accordingly, it is proposed that the carbon electrodes are effective to extract photogenerated holes in MAPbBr3 solar cells, and the industry‐applicable carbon electrodes will not limit the performance of bromide‐based perovskite solar cells. Based on the analysis of the band alignment, it is found that the voltage (energy) loss across the interface between MAPbBr3 and carbon is very small compared to the offset between the valence band maximum of MAPbBr3 and the work function of graphite. This finding implies either Fermi level pinning or highly doped region inside MAPbBr3 layer exists. The band‐edge electroluminescence spectra of MAPbBr3 from the solar cells further support no back‐transfer pathways of electrons across the MAPbBr3/TiO2 interface.  相似文献   
852.
Rational construction of atomic‐scale interfaces in multiphase nanocomposites is an intriguing and challenging approach to developing advanced catalysts for both oxygen reduction (ORR) and evolution reactions (OER). Herein, a hybrid of interpenetrating metallic Co and spinel Co3O4 “Janus” nanoparticles stitched in porous graphitized shells (Co/Co3O4@PGS) is synthesized via ionic exchange and redox between Co2+ and 2D metal–organic‐framework nanosheets. This strategy is proven to effectively establish highways for the transfer of electrons and reactants within the hybrid through interfacial engineering. Specifically, the phase interpenetration of mixed Co species and encapsulating porous graphitized shells provides an optimal charge/mass transport environment. Furthermore, the defect‐rich interfaces act as atomic‐traps to achieve exceptional adsorption capability for oxygen reactants. Finally, robust coupling between Co and N through intimate covalent bonds prohibits the detachment of nanoparticles. As a result, Co/Co3O4@PGS outperforms state‐of‐the‐art noble‐metal catalysts with a positive half‐wave potential of 0.89 V for ORR and a low potential of 1.58 V at 10 mA cm?2 for OER. In a practical demonstration, ultrastable cyclability with a record lifetime of over 800 h at 10 mA cm?2 is achieved by Zn–air batteries with Co/Co3O4@PGS within the rechargeable air electrode.  相似文献   
853.
Rechargeable aqueous zinc‐ion batteries (ZIBs) with high safety and low‐cost are highly desirable for grid‐scale energy storage, yet the energy storage mechanisms in the current cathode materials are still complicated and unclear. Hence, several sodium vanadates with NaV3O8‐type layered structure (e.g., Na5V12O32 and HNaV6O16·4H2O) and β‐Na0.33V2O5‐type tunneled structure (e.g., Na0.76V6O15) are constructed and the storage/release behaviors of Zn2+ ions are deeply investigated in these two typical structures. It should be mentioned that the 2D layered Na5V12O32 and HNaV6O16·4H2O with more effective path for Zn2+ diffusion exhibit higher ion diffusion coefficients than that of tunneled Na0.76V6O15. As a result, Na5V12O32 delivers higher capacity than that of Na0.76V6O15, and a long‐term cyclic performance up to 2000 cycles at 4.0 A g?1 in spite of its capacity fading. This work provides a new perspective of Zn2+ storage mechanism in aqueous ZIB systems.  相似文献   
854.
It has been well documented that changes in ion fluxes across cellular membranes is fundamental in maintaining cellular homeostasis. Dysregulation and/or malfunction of ion channels are critical events in the pathogenesis of diverse diseases, including cancers. In this study, we focused on the study of K+ channels in hepatocellular carcinoma (HCC). By data mining TCGA cohort, the expression of 27 K+ channels was investigated and KCNJ11 was identified as a key dysregulated K+ channels in HCC. KCNJ11 was differentially expressed in HCC and predicted a poor prognosis in HCC patients. Inhibition of NFκB signaling suppressed KCNJ11 expression in HCC cells. Knockdown of KCNJ11 expression inhibited cell proliferation, promoted cell apoptosis, and reduced cell invasive capacity. Mechanistically, we found that KCNJ11 promotes tumor progression through interaction with LDHA and enhancing its enzymatic activity. Pharmacological inhibition of LDHA largely compromised the oncogenic function of KCNJ11 in cell proliferation, cell apoptosis, and cell invasion. Collectively, our data, as a proof of principle, demonstrate that KCNJ11 acts as an oncogene in HCC though forming a complex with LDHA and suggest that targeting KCNJ11 can be developed as a candidate tool to dampen HCC.  相似文献   
855.
856.
857.
858.
The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.  相似文献   
859.
The essential stages of bacterial cell separation are described as the synthesis and hydrolysis of septal peptidoglycan (PG). The amidase, AmiC, which cleaves the peptide side‐chains linked to the glycan strands, contributes critically to this process and has been studied extensively in model strains of Escherichia coli. However, insights into the contribution of this protein to other processes in the bacterial cell have been limited. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogen that causes black rot disease in many economically important plants. We investigated how AmiC and LytM family regulators, NlpD and EnvC, contribute to virulence and cell separation in this organism. Biochemical analyses of purified AmiC demonstrated that it could hydrolyse PG and its activity could be potentiated by the presence of the regulator NlpD. We also established that deletion of the genes encoding amiC1 or nlpD led to a reduction in virulence as well as effects on colony‐forming units and cell morphology. Moreover, further genetic and biochemical evidence showed that AmiC1 and NlpD affect the secretion of type III effector XC3176 and hypersensitive response (HR) induction in planta. These findings indicate that, in addition to their well‐studied role(s) in cell separation, AmiC and NlpD make an important contribution to the type III secretion (T3S) and virulence regulation in this important plant pathogen.  相似文献   
860.

Background and Objectives

This study aimed to assess the changes of RA function in patients with obstructive sleep apnea syndrome (OSAS) using velocity vector imaging (VVI) and to evaluate the application of VVI technology.

Methods

According to the apnea–hypopnea index (AHI), 71 patients with OSAS were divided into three groups: mild, moderate, and severe. A total of 30 cases of healthy subjects were enrolled as the control group. Digital images of apex four-chamber views were acquired to measure the right atrium (RA) linear dimensions and volume parameters including RA longitudinal diameter (RAL), transverse diameter (RAT), RA maximum volume (Vmax), RA minimum volume (Vmin), right atrial volume before contraction (Vpre). Right atrial volume parameters were corrected by body surface area (VImax, VImin, VIpre). The total right atrial emptying fraction (RATEF), right atrial passive emptying fraction (RAPEF), right atrial active contraction emptying fraction (RAAEF) were calculated. The VVI data measuring right atrial global strain (RA-GLS), right atrial strain rate in ventricular systolic phase (RA-SRs), right atrial strain rate in ventricular early diastolic phase (RA-SRe), right atrial strain rate in ventricular late diastolic phase (RA-SRa).

Results

  1. 1.
    RA linear dimensions and volume parameters in severe OSAS were higher than those of control group. RAPEF in severe group was lower than control group and mild OSAS group (t?= 2.681, P?=?0.021; t?= 2.985, P?=?0.011; respectively). RAAEF in OSAS moderate group was higher than that of control group (t?= 3.006, P?=?0.02), and without statistical difference (P?>?0.05) in the severe OSAS group and the control group.
     
  2. 2.
    RA-GLS in moderate OSAS group was significantly lower than that of control group (t?= 2.333, P?=?0.040) and reduced more obvious in the severe OSAS group (vs control, t?= 3.25, P?=?0.008, vs mild; t?= 3.011, P?=?0.012; respectively). RA-SRe in moderate and severe OSAS groups were lower than control group (t?= 2.466, P?=?0.031; t?= 3.547, P?=?0.005; respectively). RA-SRs of OSAS in severe group was lower than that of control and mild groups (t?= 3.665, P?=?0.004; t?= 3.204, P?=?0.008; respectively). RA-SRa in severe OSAS group was lower than that of control group (t?= 2.425, P?=?0.034).
     
  3. 3.
    Multivariate regression analysis showed that RA-GLS and RA-SRe were independently correlated with AHI (t?=???2.738, P?=?0.010; t?=???2.191, P?=?0.036; respectively).
     

Conclusion

RA function was impaired in patients with OSAS. On hemodynamics, the change of RA function performed increased of reserve function, reduced pipeline function and increased of contraction function. However, the strain and strain rate reduced in different degree. RA-GLS and RA-SRe decreased the earliest, which suggested that strain and strain rate were the parameters which can reflect myocardial function damage earliest. VVI can more earlier and accurately detect myocardial dysfunction of right atrium in patients with OSAS, which is expected to be a worthy technique for early clinical therapy in patients with OSAS.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号