首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   52篇
  2023年   5篇
  2019年   5篇
  2018年   14篇
  2017年   10篇
  2016年   7篇
  2015年   26篇
  2014年   25篇
  2013年   25篇
  2012年   34篇
  2011年   24篇
  2010年   21篇
  2009年   19篇
  2008年   33篇
  2007年   38篇
  2006年   23篇
  2005年   30篇
  2004年   27篇
  2003年   18篇
  2002年   18篇
  2001年   20篇
  2000年   16篇
  1999年   13篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   11篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   12篇
  1990年   14篇
  1989年   9篇
  1988年   17篇
  1987年   7篇
  1982年   7篇
  1981年   4篇
  1979年   4篇
  1978年   8篇
  1977年   9篇
  1976年   8篇
  1975年   8篇
  1974年   10篇
  1973年   5篇
  1972年   9篇
  1971年   12篇
  1970年   7篇
  1969年   8篇
  1967年   7篇
  1966年   4篇
  1851年   7篇
排序方式: 共有717条查询结果,搜索用时 15 毫秒
81.
ABC A-subfamily transporters: structure, function and disease   总被引:7,自引:0,他引:7  
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.  相似文献   
82.
We queried 101,951 white, Hispanic, black, Asian, American Indian (i.e., American Indian or Alaska Native in the United States and North American Indian, Metis, or Inuit in Canada) and Pacific Islander (including Native Hawaiian) adults who agreed to be genotypically and phenotypically screened for hemochromatosis as part of the Hemochromatosis and Iron Overload Screening (HEIRS) study about their views on sharing genetic test information with family members. Multiple logistic regression (adjusting for study site, age group, race/ethnicity, preferred language, gender, education group, income group, SF-36 General Health and Mental Health subscales, perceived benefits and limitations of genetic testing, and belief that genetic testing is a good idea) evaluated independent predictors of responding "Strongly Agree" or "Agree" versus "Disagree" or "Strongly Disagree" to the statement "Information about a person's genetic risk should be shared with family members". Agreement that genetic risk information should be shared with family members was high (93% in the overall sample of 78,952 who answered this question), but differed among racial/ethnic groups. Hispanics were significantly less likely to agree that genetic test information should be shared with family members (i.e., 88% versus 92% or more among all other ethnicities). The relationship of perceived limitations and benefits of testing, gender, and age group to the belief that information should be shared differed among racial/ethnic groups, with Spanish-preferring Hispanics being the most different from other subgroups.  相似文献   
83.
84.
The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.  相似文献   
85.
The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane--the cristae membrane (CM) and the inner boundary membrane (IBM)--under different physiological conditions. We found that under fermentable growth conditions, Oxa1 is enriched in the IBM, whereas under nonfermentable (respiratory) growth conditions, it is predominantly localized in the CM. The enrichment of Oxa1 in the CM requires mitochondrial translation; similarly, deletion of the ribosome-binding domain of Oxa1 prevents an enrichment of Oxa1 in the CM. The predominant localization in the IBM under fermentable growth conditions is prevented by inhibiting mitochondrial protein import. Furthermore, overexpression of the nuclear-encoded Oxa1 substrate Mdl1 shifts the distribution of Oxa1 toward the IBM. Apparently, the availability of nuclear- and mitochondrial-encoded substrates influences the inner-membrane distribution of Oxa1. Our findings show that the distribution of Oxa1 within the inner membrane is dynamic and adapts to different physiological needs.  相似文献   
86.
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号