首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11560篇
  免费   922篇
  国内免费   816篇
  13298篇
  2024年   22篇
  2023年   221篇
  2022年   410篇
  2021年   652篇
  2020年   401篇
  2019年   523篇
  2018年   541篇
  2017年   346篇
  2016年   514篇
  2015年   728篇
  2014年   813篇
  2013年   925篇
  2012年   1090篇
  2011年   944篇
  2010年   582篇
  2009年   503篇
  2008年   551篇
  2007年   502篇
  2006年   437篇
  2005年   369篇
  2004年   311篇
  2003年   233篇
  2002年   191篇
  2001年   208篇
  2000年   173篇
  1999年   184篇
  1998年   103篇
  1997年   126篇
  1996年   109篇
  1995年   89篇
  1994年   95篇
  1993年   49篇
  1992年   74篇
  1991年   55篇
  1990年   44篇
  1989年   46篇
  1988年   38篇
  1987年   27篇
  1986年   19篇
  1985年   23篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Aluminium (Al) toxicity is the most important limiting factor for crop production in acid soil environments worldwide. In some plant species, application of magnesium (Mg(2+)) can alleviate Al toxicity. However, it remains unknown whether overexpression of magnesium transport proteins can improve Al tolerance. Here, the role of AtMGT1, a member of the Arabidopsis magnesium transport family involved in Mg(2+) transport, played in Al tolerance in higher plants was investigated. Expression of 35S::AtMGT1 led to various phenotypic alterations in Nicotiana benthamiana plants. Transgenic plants harbouring 35S::AtMGT1 exhibited tolerance to Mg(2+) deficiency. Element assay showed that the contents of Mg, Mn, and Fe in 35S::AtMGT1 plants increased compared with wild-type plants. Root growth experiment revealed that 100 microM AlCl(3) caused a reduction in root elongation by 47% in transgenic lines, whereas root growth in wild-type plants was inhibited completely. Upon Al treatment, representative transgenic lines also showed a much lower callose deposition, an indicator of increased Al tolerance, than wild-type plants. Taken together, the results have demonstrated that overexpression of ATMGT1 encoding a magnesium transport protein can improve tolerance to Al in higher plants.  相似文献   
32.
We determined the mechanisms underlying host selection by adults of the seabuckthorn carpenterworm, Holcocerus hippophaecolus Hua, Chou, Fang et Chen. Four sea buckthorn (Hippophae rhamnoides L.) subspecies (varieties) with different degrees of resistance to H. hippophaecolus were chosen for artificial insect infection in cages. The results showed that olfactory and visual cues are very important for the selection of host plants by H. hippophaecolus, but that olfactory stimuli play a more vital role in this process. The relative abundance of branches and leaves had no effect on the likelihood that adults landed on plants from four subspecies (varieties), but did influence landing rates within the same subspecies (varieties). When considering only the most resistant sea buckthorn subspecies (varieties), the presence of luxuriant branches and leaves led to lower landing rates. These results provide a theoretical basis for the understanding of H. hippophaecolus damage to sea buckthorn and the means to implement effective measures of control.  相似文献   
33.
Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3rd generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer''s transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events.  相似文献   
34.
反式作用干扰小RNA(trans—acting siRNA,tasiRNA)是植物中一类内源性siRNA,其成熟过程由miRNA所介导,而且不产生扩增效应。  相似文献   
35.
Ji H  Meng Y  Zhang X  Luo W  Wu P  Xiao B  Zhang Z  Li X 《Regulatory peptides》2011,169(1-3):13-20
The RhoA/ROCK-2 signaling pathway is necessary for activated hepatic stellate cell (HSC) contraction. HSC contraction plays an important role in the pathogenesis of cirrhosis and portal hypertension. This study investigated whether aldosterone contributes to HSC contraction by activation of the RhoA/ROCK-2 signaling pathway. Primary HSCs were isolated from Sprague-Dawley rats via in situ pronase/collagenase perfusion. We found that aldosterone enhanced the contraction of a collagen lattice seeded with HSCs. This induced contraction was suppressed by the mineralcorticoid receptor (MR) inhibitor spironolactone, the ROCK-2 inhibitor Y27632, and the angiotensin II type 1 receptor (AT(1)R) inhibitor irbesartan. Moreover, actin fiber staining showed that aldosterone significantly increased actin fiber formation in HSCs. Pre-incubating with spironolactone, Y27632, or irbesartan inhibited the aldosterone-induced actin fiber reorganization. Molecularly, the effect of aldosterone on activation of HSC contraction was mediated by phosphorylated myosin light chain (P-MLC) through the RhoA/ROCK-2 signaling pathway. All these inhibitors had the ability to block aldosterone-induced protein expressions in the RhoA/ROCK-2/P-MLC cascade in HSCs. Taken together, our current study suggests that aldosterone induces contraction of activated HSCs through the activation of the RhoA/ROCK-2 signaling pathway. This finding may provide a potential therapeutic target for control of cirrhosis and portal hypertension.  相似文献   
36.
Mammary epithelial cells undergo structural and functional differentiation at late pregnancy and parturition to produce and secrete milk. Both TGF-β and prolactin pathways are crucial regulators of this process. However, how the activities of these two antagonistic pathways are orchestrated to initiate lactation has not been well defined. Here, we show that SnoN, a negative regulator of TGF-β signaling, coordinates TGF-β and prolactin signaling to control alveologenesis and lactogenesis. SnoN expression is induced at late pregnancy by the coordinated actions of TGF-β and prolactin. The elevated SnoN promotes Stat5 signaling by enhancing its stability, thereby sharply increasing the activity of prolactin signaling at the onset of lactation. SnoN(-/-) mice display severe defects in alveologenesis and lactogenesis, and mammary epithelial cells from these mice fail to undergo proper morphogenesis. These defects can be rescued by an active Stat5. Thus, our study has identified a new player in the regulation of milk production and revealed a novel function of SnoN in mammary alveologenesis and lactogenesis in vivo through promotion of Stat5 signaling.  相似文献   
37.
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.  相似文献   
38.
The efficiency of a terrestrial ecosystem to use rainfall in production is critical in regulating the ecological functions of the earth system under global change. However, it remains unclear how rain use efficiency (RUE) will be altered by changes in climate and human activities such as biofuel harvest. In this study, we used RUE data from a long‐term experiment in a tallgrass prairie to analyze the effects of warming and biofuel harvest (clipping). From 2000 to 2011, experimental warming enhanced RUE in most years, with larger positive effects in normal and wet than dry hydrological years. Clipping decreased RUE in dry and normal hydrological years, but had no impact on RUE in wet years. The observed RUE responses resulted from treatment‐induced changes in both biologically ineffective (i.e., runoff and soil evaporation) and effective (i.e., transpiration) parts of precipitation. For example, litter cover was increased in warming plots, but reduced by clipping, leading to negative and positive effects on runoff and soil evaporation, respectively. The dominance of C4 species, which usually have higher water use efficiency than C3 species, was enhanced by warming, but reduced by clipping. Moreover, RUE was positively correlated with ratios of rainfall in the late growing season (June–August), when the growth of C4 plants was most active, relative to that in the other seasons. Our results indicate that RUE is positively influenced by climate warming, but negatively affected by biofuel harvest in tallgrass prairie of the Great Plains. These findings highlight the important roles of plant community structure and temporal distribution of precipitation in regulating ecosystem RUE.  相似文献   
39.
40.
RPB1 and RPB2, which encode the largest and second largest subunits of RNA polymerase II, respectively, are essential single copy genes in fungi, animals and most plants. Two paralogs of the RPB2 gene have been found in some groups of angioperms [Oxelman, B., Yoshikawa, N., McConaughy, B.L., Luo, J., Denton, A.L., Hall, B.D., 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol. Phylogenet. Evol. 32, 462-479]. Here, we report the results of experiments designed to identify the evolutionary origin of the RPB2 duplicate copies. Through careful sampling and phylogenetic analysis, we were able to construct the RPB2 gene tree in angiosperms and infer the phylogenetic positions of the gene duplication and gene loss events that occurred. Our study shows that an RPB2 gene duplication occurred early in core eudicot evolution, at or near the time of the Buxaceae/Trochodendraceae divergence. Subsequently, multiple gene duplication and paralog sorting events happened independently in different core eudicot taxa. Differential expression of the two RPB2 gene paralogs may explain the preservation of both paralogs in the asterids. One gene (RPB2-i) accounts for most of the RPB2 mRNA made in the flower organs while the other gene (RPB2-d) is predominantly used in the vegetative tissues. We also found two paralogs of the RPB1 gene in some core eudicot species. The RPB1 gene duplication occurred before core eudicot divergence, around the time of RPB2 gene duplication. Several independent RPB1 paralog sorting events happened in different core eudicot taxa; their occurrence was independent of the RPB2 paralog sorting events. Our results suggest that a polyploidization event happened at or near the time of the Buxaceae/Trochodendraceae divergence. We propose that this polyploidization and the partial diploidization processes thereafter may have been the driving force of core eudicot radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号