首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5442篇
  免费   418篇
  国内免费   309篇
  2024年   6篇
  2023年   79篇
  2022年   113篇
  2021年   261篇
  2020年   194篇
  2019年   227篇
  2018年   215篇
  2017年   193篇
  2016年   305篇
  2015年   339篇
  2014年   383篇
  2013年   448篇
  2012年   518篇
  2011年   441篇
  2010年   257篇
  2009年   207篇
  2008年   292篇
  2007年   228篇
  2006年   195篇
  2005年   176篇
  2004年   182篇
  2003年   132篇
  2002年   141篇
  2001年   83篇
  2000年   48篇
  1999年   73篇
  1998年   48篇
  1997年   54篇
  1996年   38篇
  1995年   30篇
  1994年   32篇
  1993年   21篇
  1992年   33篇
  1991年   12篇
  1990年   12篇
  1989年   15篇
  1988年   16篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   13篇
  1983年   20篇
  1982年   4篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
排序方式: 共有6169条查询结果,搜索用时 15 毫秒
61.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
62.
63.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
64.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
65.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
66.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
67.
68.
芍药是乙烯敏感型花卉,乙烯受体感知并传导乙烯信号,在乙烯信号转导途径中发挥重要作用。芍药PlETR1基因cDNA全长序列已分离,为了鉴定芍药PlETR1基因的功能,本研究基于PlETR1基因和表达载体序列,应用Primer Premier 5.0软件设计了一对特异性PCR引物,采用RT-PCR技术扩增出了PlETR1编码区片段,进一步构建了芍药PlETR1基因过表达载体。基于优化的模式植物烟草的组培体系和筛选出的潮霉素抗性浓度,应用农杆菌介导的叶盘法开展了芍药PlETR1基因转化烟草的研究,对转基因抗性烟草植株进行了PCR检测,结果表明HPT基因和芍药PlETR1基因已导入到烟草基因组中,且芍药PlETR1基因转录表达成功,为下一步鉴定芍药PlETR1基因的功能提供科学依据。  相似文献   
69.
绵马贯众是中国传统常用中药,本研究以温度、时间、超声功率、液料比为影响因子,多糖得率为评价指标,通过响应面法优化超声辅助提取绵马贯众多糖的工艺条件,同时测定其基本理化性质及抗氧化活性。研究结果表明,绵马贯众多糖的最佳提取工艺条件为:温度64℃、时间60 min、超声功率210 W、液料比27 mL/g。此时多糖得率为9.57%,与预测值接近。理化性质分析表明绵马贯众多糖为含少量蛋白的酸性多糖。体外抗氧化研究表明绵马贯众多糖具有很强的DPPH自由基清除活性,IC50值为0.29 mg/mL;较好的羟基自由基清除活性,其IC50值为1.10 mg/mL;对DNA的氧化损伤有显著的保护作用。绵马贯众多糖可以作为一种潜在的抗氧化剂应用于食品和化妆品等领域。  相似文献   
70.
The decline in DNA repair capacity contributes to the age‐associated decrease in genome integrity in somatic cells of different species. However, due to the lack of clinical samples and appropriate tools for studying DNA repair, whether and how age‐associated changes in DNA repair result in a loss of genome integrity of human adult stem cells remains incompletely characterized. Here, we isolated 20 eyelid adipose‐derived stem cell (ADSC) lines from healthy individuals (young: 10 donors with ages ranging 17–25 years; old: 10 donors with ages ranging 50–59 years). Using these cell lines, we systematically compared the efficiency of base excision repair (BER) and two DNA double‐strand break (DSB) repair pathways—nonhomologous end joining (NHEJ) and homologous recombination (HR)—between the young and old groups. Surprisingly, we found that the efficiency of BER but not NHEJ or HR is impaired in aged human ADSCs, which is in contrast to previous findings that DSB repair declines with age in human fibroblasts. We also demonstrated that BER efficiency is negatively associated with tail moment, which reflects a loss of genome integrity in human ADSCs. Mechanistic studies indicated that at the protein level XRCC1, but not other BER factors, exhibited age‐associated decline. Overexpression of XRCC1 reversed the decline of BER efficiency and genome integrity, indicating that XRCC1 is a potential therapeutic target for stabilizing genomes in aged ADSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号