首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34201篇
  免费   3075篇
  国内免费   2536篇
  39812篇
  2024年   94篇
  2023年   435篇
  2022年   841篇
  2021年   1352篇
  2020年   982篇
  2019年   1192篇
  2018年   1178篇
  2017年   815篇
  2016年   1217篇
  2015年   2042篇
  2014年   2273篇
  2013年   2524篇
  2012年   3076篇
  2011年   2851篇
  2010年   1697篇
  2009年   1511篇
  2008年   1841篇
  2007年   1650篇
  2006年   1507篇
  2005年   1242篇
  2004年   1155篇
  2003年   985篇
  2002年   892篇
  2001年   719篇
  2000年   657篇
  1999年   586篇
  1998年   326篇
  1997年   314篇
  1996年   297篇
  1995年   249篇
  1994年   265篇
  1993年   180篇
  1992年   320篇
  1991年   295篇
  1990年   246篇
  1989年   229篇
  1988年   193篇
  1987年   156篇
  1986年   146篇
  1985年   151篇
  1984年   143篇
  1983年   104篇
  1982年   91篇
  1980年   59篇
  1979年   76篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Plant immune responses to pathogens are often associated with enhanced production of reactive oxygen species (ROS), known as the oxidative burst, and with rapid hypersensitive host cell death (the hypersensitive response, HR) at sites of attempted infection. It is generally accepted that the oxidative burst acts as a promotive signal for HR, and that HR is highly correlated with efficient disease resistance. We have identified the Arabidopsis mutant rph1 ( resistance to Phytophthora 1 ), which is susceptible to the oomycete pathogen Phytophthora brassicae despite rapid induction of HR. The susceptibility of rph1 was specific for P. brassicae and coincided with a reduced oxidative burst, a runaway cell-death response, and failure to properly activate the expression of defence-related genes. From these results, we conclude that, in the immune response to P. brassicae , (i) HR is not sufficient to stop the pathogen, (ii) HR initiation can occur in the absence of a major oxidative burst, (iii) the oxidative burst plays a role in limiting the spread of cell death, and (iv) RPH1 is a positive regulator of the P. brassicae -induced oxidative burst and enhanced expression of defence-related genes. Surprisingly, RPH1 encodes an evolutionary highly conserved chloroplast protein, indicating a function of this organelle in activation of a subset of immune reactions in response to P. brassicae . The disease resistance-related role of RPH1 was not limited to the Arabidopsis model system. Silencing of the potato homolog StRPH1 in a resistant potato cultivar caused susceptibility to the late blight pathogen Phytophthora infestans .  相似文献   
992.
目的:建立神经导向研究的模型,并鉴定netrin-1的神经导向功能.方法:用促性腺素释放激素(Gonadotropin-releasing hormone,GnRH)神经细胞为研究模型,建立双细胞团培养方法,用netrin-1诱导CmRH神经元亚克隆系NLT,观察细胞生长的诱导情况.结果:NLT细胞团在体外培养条件下,具有自发放射状迁移能力.在netrin-1诱导作用下,NLT细胞朝向netrin-1浓度梯度的方向生长,在靠近netrin-1细胞团的部位,netrin-1浓度梯度高,迁移出的细胞数目较多,约占总数目的68%,并且细胞迁移的平均距离较长为107.31μm;而在远离netrin-1细胞团部位,其netrin-1浓度梯度较低,迁移出的细胞数目相对较少约占32%,细胞迁移的平均距离较短为56.52μm.结论:netrin-1能诱导培养的NLT细胞发生明显的定向迁移,这为进一步深入研究netrin-1在神经系统中的功能和分子机制奠定了基础.  相似文献   
993.
采用液体培养的方法,分离纯化了丝状真菌宛氏拟青霉(Paecilomyces variotii)并研究了其对苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、茚并[1,2,3-cd]芘的降解效果.结果表明:接种处理30 d,该菌株对混合体系中5种PAHs的降解率为16.1%~24.6%,而对单一体系中的降解率为10.4%~33.3%;同时,对单一与混合体系中PAHs的降解作用存在一定差异,苯并[k]荧蒽和苯并[b]荧蒽在单一体系中降解率增大,而其他种类的则减小.本研究结果为高环多环芳烃共代谢机理研究和多环芳烃复合污染水土环境的生物修复提供了一种新的种质资源.  相似文献   
994.
995.
996.
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.The initial interest in vectors based on adeno-associated viruses (AAV) was for applications in gene therapy. Most of the initial work was with vectors derived from AAV serotype 2 (AAV2), which is one of the six initial isolates. In the first in vivo studies, several groups showed stable expression of the transgene Escherichia coli β-galactosidase following intramuscular (i.m.) injection of AAV2-LacZ without immune responses to the transgene (23, 44). The apparent tolerance of the host to AAV-encoded antigens to a variety of transgene products has been demonstrated in mice and some large animals (1, 35, 39). Several mechanisms have been proposed to explain the lack of T-cell responses following in vivo gene transfer with AAV, including ignorance (inadequate presentation of antigen), anergy, and suppression (1, 5, 18, 37).As applications of AAV vectors for in vivo gene transfer expanded, it became clear that the apparent immune privilege of AAV transgene products was not absolute. A number of examples emerged in which the host mounted vibrant T-cell responses to AAV-encoded transgene products. Several key parameters appeared to influence immunogenicity of the transgene. For example, Sarukhan et al. suggest that the subcellular localization of the protein influences the magnitude of the ensuing T-cell response after AAV gene transfer (37). The dose and route of administration of the AAV vector also contribute significantly to B- and T-cell responses to the transgene (3, 13). Wang et al. showed that inflammation at the site of AAV administration promotes antigen-specific immune responses to the transgene (47). A consistent observation has been that B-cell responses to AAV-encoded transgenes are much more intense and more consistently generated than CD8+ T-cell responses (8, 46, 51). A number of investigators have begun to explore AAV vectors as genetic vaccines against a variety of infectious and noninfectious diseases, based on the notion that it can be developed to stimulate transgene immune responses (14, 22, 26, 28, 48-50).The discovery of an expanded family of AAV capsids from human and nonhuman primates has provided an opportunity to evaluate the effects of capsid structure on vector performance. Most of this work has focused on the use of novel AAV serotypes for achieving higher levels of transgene expression for applications in gene therapy (7, 12, 36). Xin et al. recently evaluated, in mice, vectors as vaccines for human immunodeficiency virus type 1 (HIV-1) based on the original AAV isolates AAV1 to AAV6 and two novel AAVs we recently discovered, AAV7 and AAV8 (48). They showed significant capsid-dependent effects on T- and B-cell responses to HIV-1 gp160. We recently confirmed these observations and more thoroughly evaluated the quality of the CD8+ T-cell responses (26). AAV vectors of multiple serotypes encoding HIV-1 Gag were injected i.m. into mice, which all showed some level of CD8+ T-cell responses based on tetramer staining and peptide-induced gamma interferon (IFN-γ) expression. However, the quality of AAV-induced, Gag-specific T cells was substantially lower than that obtained with adenoviral vectors, based on several criteria. A majority of the tetramer-positive (Tet+) T cells were nonresponsive to antigen, and those that did respond to antigen produced low levels of IFN-γ and no interleukin-2 (IL-2). Very few memory T cells were generated, and animals primed with AAV vectors were not responsive to a boost with an adenoviral vector. However, all AAV serotypes studied did generate very high levels of antibodies to the Gag transgene product.A final issue to consider in the use of AAV as a genetic vaccine for HIV-1 is the presence of neutralizing antibodies (NAbs) to the vector due to prior AAV infections. We recently conducted an extensive screening of human populations from several continents and found high prevalence and high titers of NAbs to AAV1 and AAV2 and moderate levels of NAbs to AAV7 and -8 (4). In vivo gene transfer experiments indicate that AAV NAbs will likely impinge on vector efficacy (9, 33, 38).This study describes the creation of a novel AAV from rhesus macaque isolates, called AAVrh32.33, and its characterization as a genetic vaccine for HIV-1. AAVrh32.33 has properties unlike those of any others we have studied. We showed that vectors based on this novel capsid elicit strong CD8+ T-cell responses to reporter transgene products that are dependent on CD4+ T-cell help and dependent on signaling through CD40L and CD28 (L. E. Mays and J. M. Wilson, submitted for publication). Important to the use of this vector in the clinic is a very low incidence of NAbs to it in human populations. This study describes the development of vectors based on AAVrh32.33 as genetic vaccines.  相似文献   
997.
The secretion of lung surfactant requires the movement of lamellar bodies to the plasma membrane through cytoskeletal barrier at the cell cortex. We hypothesized that the cortical cytoskeleton undergoes a transient disassembly/reassembly in the stimulated type II cells, therefore allowing lamellar bodies access to the plasma membrane. Stabilization of cytoskeleton with Jasplakinolinde (JAS), a cell permeable actin microfilament stabilizer, caused a dose-dependent inhibition of lung surfactant secretion stimulated by terbutaline. This inhibition was also observed in ATP-, phorbol 12-myristate 13-acetate (PMA)- or Ca(2+) ionophore A23187-stimulated surfactant secretion. Stimulation of type II cells with terbutaline exhibited a transient disassembly of filamentous actin (F-actin) as determined by staining with Oregon Green 488 Phalloidin. The protein kinase A inhibitor, H89, abolished the terbutaline-induced F-actin disassembly. Western blot analysis using anti-actin and anti-annexin II antibodies showed a transient increase of G-actin and annexin II in the Triton X-100 soluble fraction of terbutaline-stimulated type II cells. Furthermore, introduction of exogenous annexin II tetramer (AIIt) into permeabilized type II cells caused a disruption in the cortical actin. Treatment of type II cells with N-ethylmaleimide (NEM) resulted in a disruption of the cortical actin. NEM also inhibited annexin II's abilities to bundle F-actin. The results suggest that cytoskeleton undergoes reorganization in the stimulated type II cells, and annexin II tetramer plays a role in this process.  相似文献   
998.
Abonyo BO  Gou D  Wang P  Narasaraju T  Wang Z  Liu L 《Biochemistry》2004,43(12):3499-3506
The secretion of lung surfactant in alveolar type II cells is a complex process involving the fusion of lamellar bodies with the plasma membrane. This process is somewhat different from the exocytosis of hormones and neurotransmitters. For example, it is a relatively slower process, and lamellar bodies are very large vesicles with a diameter of approximately 1 microm. SNARE proteins are the conserved molecular machinery of exocytosis in the majority of secretory cells. However, their involvement in surfactant secretion has not been reported. Here, we showed that syntaxin 2 and SNAP-23 are expressed in alveolar type II cells. Both proteins are associated with the plasma membrane, and to some degree with lamellar bodies. An antisense oligonucleotide complementary to syntaxin 2 decreased its mRNA and protein levels. The same oligonucleotide also inhibited surfactant secretion, independent of secretagogues. A peptide derived from the N-terminus of syntaxin 2 or the C-terminus of SNAP-23 significantly inhibited Ca(2+)- and GTPgammaS-stimulated surfactant secretion from permeabilized type II cells in a dose-dependent manner. Furthermore, introduction of anti-syntaxin 2 or anti-SNAP-23 antibodies into permeabilized type II cells also inhibited surfactant release. Our results suggest that syntaxin 2 and SNAP-23 are required for regulated surfactant secretion.  相似文献   
999.
1000.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号