Axonal guidance signals are transduced through growth cone surface receptors to the interior leading to changes of actin dynamics
and actin binding proteins, which are critical in determining the outcome of actin cytoskeleton reorganization. We report
here the characterization of the Drosophila actin binding protein abLIM/Unc-115 homolog Dunc-115 and its role in the nervous system. Three Dunc-115 isoforms are identified
as Dunc-115L, M and S, respectively. While Dunc-115L is a canonical homolog of Unc-115 with four LIM domains and one villin
headpiece domain, Dunc-115M and S are novel isoforms without counterparts in other species. Our molecular modeling shows Dunc-115L
is likely to bind to actin. Mutant analysis reveals that Dunc-115 is involved in axonal projection in both the visual and
central nervous system. 相似文献
Triacontanol (TRIA) increased the contents of total chlorophyll (Chl), Chl a and Chl b by 25.1%, 26.1% and 22.4% respectively 4 h after treatment in rice seedlings. The minimal fluorescence (F0), the maximal fluorescence (Fm) and Fv/Fm were also higher in TRIA-treated plants. In actinic light, other Chl fluorescence parameters were measured at different photon flux densities (PFD) to construct light response curves of the quantum yield of PSII electron transport (PSII), light response curves of photochemical quenching (qp), and light response curves of non-photochemical quenching (qN), respectively. The PSII and qp declined with the increasing PFD with a higher level present in TRIA-treated plants. The qN increased with the increasing PFD with a lower level present in TRIA-treated plants. Two-dimensional gel electrophoresis indicated a protein expression difference between TRIA-treated materials and the controls at the total-soluble-protein level. Rubisco was 30% higher in TRIA-treated plants than in controls. The quantity of other proteins was unchanged in response to TRIA. These data provide biochemical and photochemical evidence for the effects of TRIA on photosynthesis. 相似文献
Necroptosis is a programmed necrosis that is mediated by receptor-interacting protein kinases RIPK1, RIPK3 and the mixed lineage kinase domain-like protein, MLKL. Necroptosis must be strictly regulated to maintain normal tissue homeostasis, and dysregulation of necroptosis leads to the development of various inflammatory, infectious, and degenerative diseases. Ubiquitylation is a widespread post-translational modification that is essential for balancing numerous physiological processes. Over the past decade, considerable progress has been made in the understanding of the role of ubiquitylation in regulating necroptosis. Here, we will discuss the regulatory functions of ubiquitylation in necroptosis signaling pathway. An enhanced understanding of the ubiquitylation enzymes and regulatory proteins in necroptotic signaling pathway will be exploited for the development of new therapeutic strategies for necroptosis-related diseases.
A novel pink-coloured, non-spore-forming, non-motile, Gram-negative bacterium, designated YIM 48858T, is described by using a polyphasic approach. The strain can grow at pH 6.5–9 (optimum at pH 7) and 25–30°C (optimum at 28°C).
NaCl is not required for its growth. Positive for oxidase and catalase. Urease activity, nitrate reduction, starch and Tween
80 tests are negative reaction. 16S rRNA gene sequence similarity studies showed that strain YIM 48858T is a member of the genus Rubellimicrobium, with similarities of 96.3, 95.7 and 95.5% to Rubellimicrobium mesophilum MSL-20T, Rubellimicrobium aerolatum 5715S-9T and Rubellimicrobiumthermophilum DSM 16684T, respectively. Q-10 was the predominant respiratory ubiquinone as in the other members of the genus Rubellimicrobium. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, glycolipid and the major fatty
acids were C18:1 ω7c, C16:0 and C10:0 3-OH, which are very different from the valid published species. The DNA G + C content
was 67.7 mol%. Both phylogenetic and chemotaxonomic evidence supports that YIM 48858T is a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium roseum sp. nov. is proposed. The type strain is YIM 48858T (=CCTCC AA 208029T =KCTC 23202T). 相似文献