全文获取类型
收费全文 | 3608篇 |
免费 | 113篇 |
国内免费 | 88篇 |
专业分类
3809篇 |
出版年
2025年 | 3篇 |
2024年 | 82篇 |
2023年 | 88篇 |
2022年 | 164篇 |
2021年 | 271篇 |
2020年 | 191篇 |
2019年 | 229篇 |
2018年 | 216篇 |
2017年 | 143篇 |
2016年 | 207篇 |
2015年 | 274篇 |
2014年 | 362篇 |
2013年 | 356篇 |
2012年 | 338篇 |
2011年 | 290篇 |
2010年 | 144篇 |
2009年 | 117篇 |
2008年 | 106篇 |
2007年 | 86篇 |
2006年 | 42篇 |
2005年 | 37篇 |
2004年 | 25篇 |
2003年 | 13篇 |
2002年 | 9篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1989年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1959年 | 2篇 |
排序方式: 共有3809条查询结果,搜索用时 20 毫秒
101.
Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91phox, a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O2
.
-) formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91phox colocalization to LRs clusters which were proved to mediate the HG induced O2
.
- formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91phox colocalization to LRs clusters, O2
.
- formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O2
.
- production. 相似文献
102.
103.
104.
Using flower organs as primary explants and via somatic embryogenesis, we developed an efficient protocol for bulblet regeneration from in vitro-derived seedlings (bulblets) of Griffinia liboniana. Callus induction was tested on five types of floral organ (perianth, filament, pedicel, ovary and anther) in the presence of three combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (6-BA). Filament constituted the most responsive primary explant for regenerative callus induction, and the highest frequencies of callus induction (63.0?±?1.9%) and numbers of differentiated buds (3.7?±?0.3 buds/callus) were found on Murashige and Skoog (1962) medium (MS) supplemented with 1.0 mg L?1 2,4-D and 1.0 mg L?1 6-BA. Starting with in vitro-derived bulblets (0.8–1.5 cm in diameter), somatic embryo (SE) formation occurred within 6 weeks, followed by 8 weeks for SE germination and development on PGR-free media. The highest percentage (78.9?±?2.2%) of embryogenesis was obtained on MS media supplemented with 0.5 mg L?1 6-BA and 1.5 mg L?1 2,4-D, with an average of 28.0?±?2.1 bulblets/explant. Well-rooted bulblets were successfully acclimated to ex vitro conditions. A stable ploidy level of the regenerated bulblets was confirmed by flow cytometry (FCM) analysis. This is the first report about micropropagation methods of G. liboniana and constitutes an efficient and reusable method for bulblet regeneration of this endangered species. Additionally, this protocol enables large-scale vegetative production, germplasm preservation and genetic engineering of endangered Griffinia species. 相似文献
105.
Huifang Lv Wang Dong Zhi Cao Jihui Lin Yueling Ouyang Kangkang Guo Cunfa Li Yanming Zhang 《Journal of biosciences》2018,43(5):947-957
Classical swine fever (CSF) is a contagious disease with a high mortality rate and is caused by classical swine fever virus (CSFV). CSFV non-structural protein 4B (NS4B) plays a crucial role in CSFV replication and pathogenicity. However, precisely how NS4B exerts these functions remains unknown, especially as there are no reports relating to potential cellular partners of CSFV NS4B. Here, a yeast two-hybrid (Y2H) system was used to screen the cellular proteins interacting with NS4B from a porcine alveolar macrophage (PAM) cDNA library. The protein screen along with alignment using the NCBI database revealed 14 cellular proteins that interact with NS4B: DDX39B, COX7C, FTH1, MAVS, NR2F6, RPLP1, PSMC4, FGL2, MKRN1, RPL15, RPS3, RAB22A, TP53BP2 and TBK1. These proteins mostly relate to oxidoreductase activity, signal transduction, localization, biological regulation, catalytic activity, transport and metabolism by GO categories. Tank-binding kinase 1 (TBK1) was chosen for further confirmation. The NS4B-TBK1 interaction was further confirmed by subcellular co-location, co-immunoprecipitation and glutathione S-transferase pull-down assays. This study offers a theoretical foundation for further understanding of the diversity of NS4B functions in relation to viral infection and subsequent pathogenesis. 相似文献
106.
Chi Y Zhang H Huang W Zhou J Zhou Y Qian H Ni S 《Bioorganic & medicinal chemistry》2008,16(16):7607-7614
The insulinotropic hormone glucagon-like peptide-1 (GLP-1) is rapidly inactivated in the body. In order to improve its stability, we replaced the enzymatic hydrolyzation position Ala(8)with Gly and replaced Ala(30) with Cys firstly. Then the modified peptide was further PEGylated at thiol group of Cys(30). Biological activity studies showed that the resulting mPEG-MAL-Gly(8)-Cys(30)-GLP-1(7-36)-NH(2) exhibited long-lasting effect while maintaining moderate glucose-lowering activity. 相似文献
107.
Sarah Shigdar Christine Qian Li Lv Chunwen Pu Yong Li Lianhong Li Manju Marappan Jia Lin Lifen Wang Wei Duan 《PloS one》2013,8(2)
EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues. Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non-specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy. 相似文献
108.
The central complex of Drosophila melanogaster plays important functions in various behaviors, such as visual and olfactory memory, visual orientation, sleep, and movement control. However little is known about the genes regulating the development of the central complex. Here we report that a mutant gene affecting central complex morphology, cbd (central brain defect), was mapped to ten-a, a type II trans-membrane protein coding gene. Down-regulation of ten-a in pan-neural cells contributed to abnormal morphology of central complex. Over-expression of ten-a by C767-Gal4 was able to partially restore the abnormal central complex morphology in the cbd mutant. Tracking the development of FB primordia revealed that C767-Gal4 labeled interhemispheric junction that separated fan-shaped body precursors at larval stage withdrew to allow the fusion of the precursors. While the C767-Gal4 labeled structure did not withdraw properly and detached from FB primordia, the two fan-shaped body precursors failed to fuse in the cbd mutant. We propose that the withdrawal of C767-Gal4 labeled structure is related to the formation of the fan-shaped body. Our result revealed the function of ten-a in central brain development, and possible cellular mechanism underlying Drosophila fan-shaped body formation. 相似文献
109.
110.
Qian Qu Hua Li Lin Bai Shiwei Zhang Jiaqi Sun Weijie Lv Chunxin Ye Cui Liu Dayou Shi 《Indian journal of microbiology》2021,61(3):338
Gut microbiome, as the largest and most important micro-ecosystem, plays a critical role in health. The purpose of this study was to evaluate whether heat stress modulates the composition and diversity of the gut microbiome in rats. The heat stress model was prepared in rats with the heating temperature maintained at 35–38°C. Cecum contents were collected after heat stress for 3 h and days 1, 3 and 7. Total DNA was extracted for 16 S rRNA sequencing and analysis of intestinal microbiome composition and diversity. The study showed that the composition of the intestinal microbiome of heat stress group was changed. And the heat stress modulated key phylotypes of gut microbiota at the level of phylum and genus. In particular, the genus of Lactobacillus and Bacteroides were significantly reduced, whereas the Oscillospira and Clostridium were increased by heat stress. Meanwhile, the rats under the heat stress encountered the change in carbohydrate metabolism, amino acid metabolism, and membrane transport to defense against stress. Taken together, the composition and structure of gut microbiome were affected by heat stress and some key phylotypes were also significantly altered. We conclude that the heat stress could impact multiple biological functions, via altering the gut microbiome. 相似文献