首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   13篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   11篇
  2013年   17篇
  2012年   16篇
  2011年   21篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   12篇
  1999年   8篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   3篇
  1973年   4篇
  1970年   3篇
  1968年   1篇
  1967年   4篇
  1966年   5篇
  1965年   2篇
  1933年   1篇
排序方式: 共有243条查询结果,搜索用时 31 毫秒
121.
122.
Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1) increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.  相似文献   
123.
124.
Meibomian gland dysfunction (MGD) is a leading cause of evaporative dry eye and ocular discomfort characterized by an unstable tear film principally attributed to afflicted delivery of lipids to the ocular surface. Herein, we elucidated longitudinal tear lipid alterations associated with disease alleviation and symptom improvement in a cohort of MGD patients undergoing eyelid-warming treatment for 12 weeks. Remarkably, eyelid-warming resulted in stark reductions in lysophospholipids (P < 0.001 for lyso-plasmalogen phosphatidylethanolamine, lysophosphatidylcholine, and lysophosphatidylinositol), as well as numerous PUFA-containing diacylglyceride species in tears, accompanied by significant increases in several PUFA-containing phospholipids. These changes in tear lipidomes suggest that eyelid-warming leads to diminished activity of tear phospholipases that preferentially target PUFA-containing phospholipids. In addition, treatment led to appreciable increases (P < 0.001) in O-acyl-ω-hydroxy-FAs (OAHFAs), which are lipid amphiphiles critical to the maintenance of tear film stability. Longitudinal changes in the tear lipids aforementioned also significantly (P < 0.05) correlated with reduced rate of ocular evaporation and improvement in ocular symptoms. The foregoing data thus indicate that excess ocular surface phospholipase activity detrimental to tear film stability could be alleviated by eyelid warming alone without application of steroids and identify tear OAHFAs as suitable markers to monitor treatment response in MGD.  相似文献   
125.
Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas’s disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.  相似文献   
126.
127.
Biosynthetic thiolases (EC 2.3.1.9) are key enzymes in the branched catabolism of diverse clostridia as their activity and regulation influence the production of organic acids and solvents. In Clostridium butyricum, they are also involved in the production of hydrogen as a sustainable and environmentally benign energy source. In this study, the gene coding for thiolase from C. butyricum DSM 10702 was cloned by genome walking. It was found to consist of 1179 bp coding for a protein with 393 amino acids and a deduced molecular weight of 41.4 kDa. The enzyme was fused to an N-terminal his-tag, expressed in Escherichia coli, purified to near homogeneity and characterised for biochemical and kinetic properties. Gel filtration chromatography revealed that the catalytically active enzyme consists of a homotetramer. The enzyme showed a KM of ~32 μM towards acetoacetyl-CoA and of ~21 μM towards CoASH at 30 °C and pH 8.0. Claisen condensation of acetyl-CoA by thiolase was analysed in a coupled enzyme assay, where β-hydroxybutyryl-CoA dehydrogenase was applied catalysing the subsequent NADH-dependant reduction of the formed condensation product acetoacetyl-CoA. For this purpose the latter enzyme was cloned from C. butyricum DSM 10702 and recombinantly expressed in E. coli. The KM of thiolase towards acetyl-CoA was ~674 μM at 30 °C and pH 7.5. Acetyl-CoA condensation was inhibited even at micromolar concentrations of CoASH indicating that CoASH has an important regulatory function in vivo.  相似文献   
128.
Lipidomics: new tools and applications   总被引:1,自引:0,他引:1  
Wenk MR 《Cell》2010,143(6):888-895
Once viewed simply as a reservoir for carbon storage, lipids are no longer cast as bystanders in the drama of biological systems. The emerging field of lipidomics is driven by technology, most notably mass spectrometry, but also by complementary approaches for the detection and characterization of lipids and their biosynthetic enzymes in living cells. The development of these integrated tools promises to greatly advance our understanding of the diverse biological roles of lipids.  相似文献   
129.
Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D(2), which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D(2), and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号