全文获取类型
收费全文 | 14199篇 |
免费 | 1260篇 |
国内免费 | 1677篇 |
专业分类
17136篇 |
出版年
2024年 | 53篇 |
2023年 | 223篇 |
2022年 | 461篇 |
2021年 | 686篇 |
2020年 | 563篇 |
2019年 | 649篇 |
2018年 | 586篇 |
2017年 | 467篇 |
2016年 | 616篇 |
2015年 | 955篇 |
2014年 | 1063篇 |
2013年 | 1135篇 |
2012年 | 1473篇 |
2011年 | 1254篇 |
2010年 | 779篇 |
2009年 | 711篇 |
2008年 | 816篇 |
2007年 | 686篇 |
2006年 | 668篇 |
2005年 | 516篇 |
2004年 | 427篇 |
2003年 | 377篇 |
2002年 | 297篇 |
2001年 | 202篇 |
2000年 | 187篇 |
1999年 | 173篇 |
1998年 | 137篇 |
1997年 | 119篇 |
1996年 | 96篇 |
1995年 | 90篇 |
1994年 | 99篇 |
1993年 | 62篇 |
1992年 | 79篇 |
1991年 | 71篇 |
1990年 | 43篇 |
1989年 | 46篇 |
1988年 | 30篇 |
1987年 | 31篇 |
1986年 | 27篇 |
1985年 | 32篇 |
1984年 | 16篇 |
1983年 | 11篇 |
1982年 | 11篇 |
1981年 | 13篇 |
1980年 | 9篇 |
1978年 | 10篇 |
1976年 | 10篇 |
1975年 | 11篇 |
1973年 | 8篇 |
1970年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
Qiang Lv Shuang Han Lei Wang Jinchan Xia Peng Li Ruoyang Hu Jinzheng Wang Lei Gao Yuli Chen Yu Wang Jing Du Fang Bao Yong Hu Xingzhi Xu Wei Xiao Yikun He 《Nucleic acids research》2022,50(12):6820
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity. 相似文献
12.
13.
14.
Lihua Qu Yi Li Chao Chen Tong Yin Qian Fang Yijin Zhao Wenting Lv Ziqi Liu Yangye Chen Li Shen 《Cell death & disease》2022,13(8)
Acute lung injury (ALI) is a potentially life-threatening, devastating disease with an extremely high rate of mortality. The underlying mechanism of ALI is currently unclear. In this study, we aimed to confirm the hub genes associated with ALI and explore their functions and molecular mechanisms using bioinformatics methods. Five microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs) and the key genes were identified via the protein-protein interaction (PPI) network. Lipopolysaccharide intraperitoneal injection was administered to establish an ALI model. Overall, 40 robust DEGs, which are mainly involved in the inflammatory response, protein catabolic process, and NF-κB signaling pathway were identified. Among these DEGs, we identified two genes associated with ALI, of which the CAV-1/NF-κB axis was significantly upregulated in ALI, and was identified as one of the most effective targets for ALI prevention. Subsequently, the expression of CAV-1 was knocked down using AAV-shCAV-1 or CAV-1-siRNA to study its effect on the pathogenesis of ALI in vivo and in vitro. The results of this study indicated that CAV-1/NF-κB axis levels were elevated in vivo and in vitro, accompanied by an increase in lung inflammation and autophagy. The knockdown of CAV-1 may improve ALI. Mechanistically, inflammation was reduced mainly by decreasing the expression levels of CD3 and F4/80, and activating autophagy by inhibiting AKT/mTOR and promoting the AMPK signaling pathway. Taken together, this study provides crucial evidence that CAV-1 knockdown inhibits the occurrence of ALI, suggesting that the CAV-1/NF-κB axis may be a promising therapeutic target for ALI treatment.Subject terms: Cell signalling, Respiratory tract diseases 相似文献
15.
Wenli Hui Zhipeng Yang Ke Fang Mengdi Wu Wenhua Mu Cong Zhao Dan Xue Tengteng Zhu Xiao Li Ming Gao Yunhua Lu Kunping Yan 《Current issues in molecular biology》2022,44(6):2683
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2−·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage. 相似文献
16.
Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis 总被引:4,自引:0,他引:4
Tan M Jing T Lan KH Neal CL Li P Lee S Fang D Nagata Y Liu J Arlinghaus R Hung MC Yu D 《Molecular cell》2002,9(5):993-1004
ErbB2 overexpression confers resistance to taxol-induced apoptosis by inhibiting p34(Cdc2) activation. One mechanism is via ErbB2-mediated upregulation of p21(Cip1), which inhibits Cdc2. Here, we report that the inhibitory phosphorylation on Cdc2 tyrosine (Y)15 (Cdc2-Y15-p) is elevated in ErbB2-overexpressing breast cancer cells and primary tumors. ErbB2 binds to and colocalizes with cyclin B-Cdc2 complexes and phosphorylates Cdc2-Y15. The ErbB2 kinase domain is sufficient to directly phosphorylate Cdc2-Y15. Increased Cdc2-Y15-p in ErbB2-overexpressing cells corresponds with delayed M phase entry. Expressing a nonphosphorylatable mutant of Cdc2 renders cells more sensitive to taxol-induced apoptosis. Thus, ErbB2 membrane RTK can confer resistance to taxol-induced apoptosis by directly phosphorylating Cdc2. 相似文献
17.
Many cytosolic and nuclear proteins are modified by monomeric O-linked N-acetyl-d-glucosamine (O-GlcNAc). The biological functions of this form of glycosylation are unclear but evidence suggests that it heightens regulation of protein function. To assess the biological function of O-GlcNAc addition, we examined the biological effects of galactosyltransferase (GalT) microinjected into the cytoplasm of Xenopus ovarian oocytes. GalT, which catalyzes beta1-4-galactose addition to O-GlcNAc, should inhibit deglycosylation and lectin-like interactions requiring unmodified O-GlcNAc residues. Although GalT injection into diplotene-arrested oocytes has no detectable effects on cell viability, it is toxic to oocytes entering meiosis. Cell-cycle-specific toxicity is recapitulated in vitro as GalT inhibits formation of nuclei and microtubule asters from cell-free extracts of ovulated frog eggs. These observations suggest that regulation of O-GlcNAc is important for cell cycle progression and may be important in diseases in which O-GlcNAc metabolism is abnormal. The methods described here outline a viable experimental scheme for ascribing a biological function to this form of glycosylation. 相似文献
18.
Lipidomic changes during different growth stages of Nitzschia closterium f. minutissima 总被引:3,自引:0,他引:3
Xiaoling Su Jilin Xu Xiaojun Yan Peng Zhao Juanjuan Chen Chengxu Zhou Fang Zhao Shuang Li 《Metabolomics : Official journal of the Metabolomic Society》2013,9(2):300-310
Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF–MS) is a powerful lipidomic tool. In this study, we developed a UPLC/Q-TOF–MS based method to investigate the lipid metabolomic changes in different growth phases of Nitzschia closterium f. minutissima. The data classification and biomarker selection were carried out by using multivariate statistical analysis, including principal components analysis (PCA), projection to latent structures with discriminant analysis (PLS-DA), and orthogonal projection to latent structures with discriminant analysis (OPLS-DA). We discovered that the intercellular lipid metabolites were significantly different among exponential, early stationary and late stationary phases. Thirty-one lipid molecules were selected and identified as putative biomarkers, including free fatty acid, Harderoporphyrin, phosphatidylglycerol, 1,2-diacyglycerl-3-O-4′-(N,N-trimethy)-homoserine, triacylglycerol, cholesterol, sulfoquinovosyldiacylglycerol, lyso-sulfoquinovosyldiacylglycerol, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and lyso-digalactosyldiacylglycerol. These lipids have been shown previously to function in energy storage, membrane stability and photosynthesis efficiency during the growth of diatoms. Further analysis on the putative biomarkers demonstrated that nitrate starvation played critical role in the transition from exponential phase to stationary phase in N. closterium. This study is the first one to explore the lipidomic changes of microalgae in different growth phases, which promotes better understanding of their physiology and ecology. 相似文献
19.
Li W Tian H Li L Li S Yue W Chen Z Qi L Hu W Zhu Y Hao B Gao C Si L Gao F 《生物化学与生物物理学报(英文版)》2012,44(7):577-583
Lung cancer is the leading cause of cancer-related mortality all over the world. In recent years, pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries. Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers. Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as: organosulfer compounds, OSC). DATS can induce apoptosis and inhibit the growth of many cancer cell lines. Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondria-dependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3, -8, and -9. Eventually, DATS induced the apoptosis and inhibited the proliferation in a concentration- and time-dependent manner. Furthermore, by establishing an animal model of female BALB/c nude mice with A549 xenografts, we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group. All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug. 相似文献
20.
Five new guaiane sesquiterpenes, 1 – 5 , were isolated from the culture broth of the endophytic fungus Xylaria sp. YM 311647, isolated from Azadirachta indica A. Juss . The structures of these compounds were elucidated on the basis of spectroscopic analyses, and their inhibitory activities against five pathogenic fungi were evaluated. All guaiane sesquiterpenes showed moderate or weak antifungal activities in a broth microdilution assay. 相似文献