首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3887篇
  免费   337篇
  国内免费   6篇
  2023年   15篇
  2022年   42篇
  2021年   65篇
  2020年   51篇
  2019年   43篇
  2018年   57篇
  2017年   54篇
  2016年   115篇
  2015年   196篇
  2014年   225篇
  2013年   261篇
  2012年   297篇
  2011年   316篇
  2010年   209篇
  2009年   179篇
  2008年   230篇
  2007年   237篇
  2006年   233篇
  2005年   229篇
  2004年   201篇
  2003年   182篇
  2002年   178篇
  2001年   47篇
  2000年   31篇
  1999年   34篇
  1998年   53篇
  1997年   35篇
  1996年   34篇
  1995年   36篇
  1994年   17篇
  1993年   36篇
  1992年   23篇
  1991年   26篇
  1990年   21篇
  1989年   9篇
  1988年   21篇
  1987年   18篇
  1986年   21篇
  1985年   10篇
  1984年   21篇
  1983年   14篇
  1982年   19篇
  1981年   22篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1973年   6篇
  1972年   9篇
  1971年   6篇
  1970年   6篇
排序方式: 共有4230条查询结果,搜索用时 156 毫秒
991.
Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.  相似文献   
992.
Experiments were carried out to examine the effects of nitrogen source on nitrogen incorporation into cyanophycin during nitrogen limitation and repletion, both with or without inhibition of protein synthesis, in cyanobacteria grown on either nitrate or ammonium. The use of nitrate and ammonium, 14N labeled in the growth medium and 15N labeled in the repletion medium, allows the determination of the source of nitrogen in cyanophycin using proton nuclear magnetic resonance spectroscopy. The data suggest that nitrogen from both the breakdown of cellular protein (14N) and directly from the medium (15N) is incorporated into cyanophycin. Nitrogen is incorporated into cyanophycin at different rates and to different extents, depending on the source of nitrogen (ammonium or nitrate) and whether the cells are first starved for nitrogen. These differences appear to be related to the activity of nitrate reductase in cells and to the possible expression of cyanophycin synthetase during nitrogen starvation.  相似文献   
993.
To define better the subcellular mechanism of heat shock (HS)-induced cardioprotection, we examined the effect of HS, as well as selective expression of individual HS proteins (HSPs), on cell injury in neonatal rat ventricular myocytes (NRVM). HS was induced in NRVM by a rapid elevation of temperature to 42 degrees C for 20 min followed by 20-24 h of recovery at 37 degrees C. Other NRVM were infected with a replication-deficient adenovirus encoding HSP27 or HSP70. On the same day, all groups were subjected to metabolic inhibition (MI). Cell injury was assayed by measurement of the percentage of total lactate dehydrogenase released, the percentage of cells staining with trypan blue, or TdT-mediated dUTP nick-end labeling, whereas cell signaling was assayed by immunoblot analysis and coimmunoprecipitation. Before MI, the viability of all treated groups did not differ significantly from control NRVM. HS resulted in a significant increase in HSP70 and HSP27 expression. Infection with either virus caused a significant increase in selective HSP content compared with control NRVM. HS protected NRVM from injury. Selective expression of HSP27 or HSP70 alone was not protective in NRVM, but dual infection with both viral vectors (HSP27 + HSP70) was protective. HS and HSP27 + HSP70 expression caused increased paxillin localization in the membrane fraction, which persisted in response to MI, compared with control NRVM. HS increased the integrin-paxillin-focal adhesion kinase interaction, whereas targeted inhibition of focal adhesion kinase activity abolished the integrin-paxillin association and resulted in an increase in cell death. HS and HSP27 + HSP70 expression increased the association of members of the focal adhesion complex and protected NRVM against irreversible injury. Cytoskeletal-based signaling pathways at focal adhesion junctions may represent a unique pathway of cardioprotection.  相似文献   
994.
DNA damage is an early event in doxorubicin-induced cardiac myocyte death   总被引:1,自引:0,他引:1  
Anthracyclines are antitumor agents the main clinical limitation of which is cardiac toxicity. The mechanism of this cardiotoxicity is thought to be related to generation of oxidative stress, causing lethal injury to cardiac myocytes. Although protein and lipid oxidation have been documented in anthracycline-treated cardiac myocytes, DNA damage has not been directly demonstrated. This study was undertaken to determine whether anthracyclines induce cardiac myocyte DNA damage and whether this damage is linked to a signaling pathway culminating in cell death. H9c2 cardiac myocytes were treated with the anthracycline doxorubicin at clinically relevant concentrations, and DNA damage was assessed using the alkaline comet assay. Doxorubicin induced DNA damage, as shown by a significant increase in the mean tail moment above control, an effect ameliorated by inclusion of a free radical scavenger. Repair of DNA damage was incomplete after doxorubicin treatment in contrast to the complete repair observed in H2O2-treated myocytes after removal of the agent. Immunoblot analysis revealed that p53 activation occurred subsequent in time to DNA damage. By a fluorescent assay, doxorubicin induced loss of mitochondrial membrane potential after p53 activation. Chemical inhibition of p53 prevented doxorubicin-induced cell death and loss of mitochondrial membrane potential without preventing DNA damage, indicating that DNA damage was proximal in the events leading from doxorubicin treatment to cardiac myocyte death. Specific doxorubicin-induced DNA lesions included oxidized pyrimidines and 8-hydroxyguanine. DNA damage therefore appears to play an important early role in anthracycline-induced lethal cardiac myocyte injury through a pathway involving p53 and the mitochondria.  相似文献   
995.
Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.  相似文献   
996.
Suzuki WA 《Neuron》2006,50(1):19-21
How do we encode, store, and retrieve new episodic memories, and what are the computations performed by the hippocampus during this process? One system that has been used to model the brain basis of episodic memory in humans is the study of spatial navigation by path integration in rodents. Here I discuss three exciting new findings focused on encoding or replay of spatial sequences in the rat hippocampus. These findings not only provide important new insight into the computations associated with encoding and consolidation of spatial trajectories, but may also have implications for understanding key aspects of human episodic memory.  相似文献   
997.
PRK1 is a lipid- and Rho GTPase-activated serine/threonine protein kinase implicated in the regulation of receptor trafficking, cytoskeletal dynamics and tumorigenesis. Although Rho binding has been mapped to the HR1 region in the regulatory domain of PRK1, the mechanism involved in the control of PRK1 activation following Rho binding is poorly understood. We now provide the first evidence that the very C-terminus beyond the hydrophobic motif in PRK1 is essential for the activation of this kinase by RhoA. Deletion of the HR1 region did not completely abolish the binding of PRK1-DeltaHR1 to GTPgammaS-RhoA nor the activation of this mutant by GTPgammaS-RhoA in vitro. In contrast, removing of the last six amino acid residues from the C-terminus of PRK1 or truncating of a single C-terminal residue from PRK1-DeltaHR1 completely abrogated the activation of these mutants by RhoA both in vitro and in vivo. The critical dependence of the very C-terminus of PRK1 on the signaling downstream of RhoA was further demonstrated by the failure of the PRK1 mutant lacking its six C-terminal residues to augment lisophosphatidic acid-elicited neurite retraction in neuronal cells. Thus, we show that the HR1 region is necessary but not sufficient in eliciting a full activation of PRK1 upon binding of RhoA. Instead, such activation is controlled by the very C-terminus of PRK1. Our results also suggest that the very C-terminus of PRK1, which is the least conserved among members of the protein kinase C superfamily, is a potential drug target for pharmacological intervention of RhoA-mediated signaling pathways.  相似文献   
998.
Downregulation of miR-122 in the rodent and human hepatocellular carcinomas   总被引:19,自引:0,他引:19  
MicroRNAs (miRs) are conserved small non-coding RNAs that negatively regulate gene expression. The miR profiles are markedly altered in cancers and some of them have a causal role in tumorigenesis. Here, we report changes in miR expression profile in hepatocellular carcinomas (HCCs) developed in male Fisher rats-fed folic acid, methionine, and choline-deficient (FMD) diet. Comparison of the miR profile by microarray analysis showed altered expression of some miRs in hepatomas compared to the livers from age-matched rats on the normal diet. While let-7a, miR-21, miR-23, miR-130, miR-190, and miR-17-92 family of genes was upregulated, miR-122, an abundant liver-specific miR, was downregulated in the tumors. The decrease in hepatic miR-122 was a tumor-specific event because it did not occur in the rats switched to the folate and methyl-adequate diet after 36 weeks on deficient diet, which did not lead to hepatocarcinogenesis. miR-122 was also silent in a transplanted rat hepatoma. Extrapolation of this study to human primary HCCs revealed that miR-122 expression was significantly (P = 0.013) reduced in 10 out of 20 tumors compared to the pair-matched control tissues. These findings suggest that the downregulation of miR-122 is associated with hepatocarcinogenesis and could be a potential biomarker for liver cancers.  相似文献   
999.
Little is known about the regulation of cell fate decisions that lead to the formation of five pairs of mammary placodes in the surface ectoderm of the mouse embryo. We have previously shown that fibroblast growth factor 10 (FGF10) is required for the formation of mammary placodes 1, 2, 3 and 5. Here, we have found that Fgf10 is expressed only in the somites underlying placodes 2 and 3, in gradients across and within these somites. To test whether somitic FGF10 is required for the formation of these two placodes, we analyzed a number of mutants with different perturbations of somitic Fgf10 gradients for the presence of WNT signals and ectodermal multilayering, markers for mammary line and placode formation. The mammary line is displaced dorsally, and formation of placode 3 is impaired in Pax3ILZ/ILZ mutants, which do not form ventral somitic buds. Mammary line formation is impaired and placode 3 is absent in Gli3Xt-J/Xt-J and hypomorphic Fgf10 mutants, in which the somitic Fgf10 gradient is shortened dorsally and less overall Fgf10 is expressed, respectively. Recombinant FGF10 rescued mammogenesis in Fgf10(-/-) and Gli3Xt-J/Xt-J flanks. We correlate increasing levels of somitic FGF10 with progressive maturation of the surface ectoderm, and show that full expression of somitic Fgf10, co-regulated by GLI3, is required for the anteroposterior pattern in which the flank ectoderm acquires a mammary epithelial identity. We propose that the intra-somitic Fgf10 gradient, together with ventral elongation of the somites, determines the correct dorsoventral position of mammary epithelium along the flank.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号