首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3377篇
  免费   308篇
  国内免费   4篇
  2023年   15篇
  2022年   20篇
  2021年   58篇
  2020年   35篇
  2019年   35篇
  2018年   42篇
  2017年   42篇
  2016年   95篇
  2015年   165篇
  2014年   186篇
  2013年   215篇
  2012年   254篇
  2011年   271篇
  2010年   175篇
  2009年   163篇
  2008年   191篇
  2007年   217篇
  2006年   208篇
  2005年   207篇
  2004年   184篇
  2003年   166篇
  2002年   166篇
  2001年   40篇
  2000年   27篇
  1999年   25篇
  1998年   52篇
  1997年   30篇
  1996年   33篇
  1995年   32篇
  1994年   15篇
  1993年   33篇
  1992年   17篇
  1991年   23篇
  1990年   18篇
  1989年   8篇
  1988年   16篇
  1987年   16篇
  1986年   21篇
  1985年   6篇
  1984年   23篇
  1983年   13篇
  1982年   21篇
  1981年   19篇
  1980年   7篇
  1978年   5篇
  1973年   6篇
  1972年   8篇
  1971年   7篇
  1970年   7篇
  1927年   8篇
排序方式: 共有3689条查询结果,搜索用时 15 毫秒
161.
The amphibian enzyme ADH8, previously named class IV-like, is the only known vertebrate alcohol dehydrogenase (ADH) with specificity towards NADP(H). The three-dimensional structures of ADH8 and of the binary complex ADH8-NADP(+) have been now determined and refined to resolutions of 2.2A and 1.8A, respectively. The coenzyme and substrate specificity of ADH8, that has 50-65% sequence identity with vertebrate NAD(H)-dependent ADHs, suggest a role in aldehyde reduction probably as a retinal reductase. The large volume of the substrate-binding pocket can explain both the high catalytic efficiency of ADH8 with retinoids and the high K(m) value for ethanol. Preference of NADP(H) appears to be achieved by the presence in ADH8 of the triad Gly223-Thr224-His225 and the recruitment of conserved Lys228, which define a binding pocket for the terminal phosphate group of the cofactor. NADP(H) binds to ADH8 in an extended conformation that superimposes well with the NAD(H) molecules found in NAD(H)-dependent ADH complexes. No additional reshaping of the dinucleotide-binding site is observed which explains why NAD(H) can also be used as a cofactor by ADH8. The structural features support the classification of ADH8 as an independent ADH class.  相似文献   
162.
Abstract While genome sequencing projects have discovered numerous types of transposable elements in diverse eukaryotes, there are many taxa of ecological and evolutionary significance that have received little attention, such as the molluscan class Bivalvia. Examination of a 0.7-MB genomic sequence database from the cupped oyster Crassostrea virginica revealed the presence of a common interspersed element, CvA. CvA possesses subterminal inverted repeats, a tandemly repeated core element, a tetranucleotide microsatellite region, and the ability to form stable secondary structures. Three other less abundant repetitive elements with a similar structure but little sequence similarity were also found in C. virginica. Ana-1, a repetitive element with similar features, was discovered in the blood ark Anadara trapezia by probing a genomic library with a dimeric repeat element contained in intron 2 of a minor globin gene in that species. All of these elements are flanked by the dinucleotide AA, a putative target-site duplication. They exhibit structural similarity to the sea urchin Tsp family and Drosophila SGM insertion sequences; in addition, they possess regions of sequence similarity to satellite DNA from several bivalve species. We suggest that the Crassostrea repetitive elements and Ana-1 are members of a new MITE-like family of nonautonomous transposable elements, named pearl. Pearl is the first putative nonautonomous DNA transposon to be identified in the phylum Mollusca.  相似文献   
163.
164.
During its developmental cycle, the intracellular bacterial pathogen Chlamydia trachomatis remains confined within a protective vacuole known as an inclusion. Nevertheless, CD8(+) T cells that recognize Chlamydia Ags in the context of MHC class I molecules are primed during infection. MHC class I-restricted presentation of these Ags suggests that these proteins or domains from them have access to the host cell cytoplasm. Chlamydia products with access to the host cell cytoplasm define a subset of molecules uniquely positioned to interface with the intracellular environment during the pathogen's developmental cycle. In addition to their use as candidate Ags for stimulating CD8(+) T cells, these proteins represent novel candidates for therapeutic intervention of infection. In this study, we use C. trachomatis-specific murine T cells and an expression-cloning strategy to show that CT442 from Chlamydia is targeted by CD8(+) T cells. CT442, also known as CrpA, is a 15-kDa protein of undefined function that has previously been shown to be associated with the Chlamydia inclusion membrane. We show that: 1) CD8(+) T cells specific for an H-2D(b)-restricted epitope from CrpA are elicited at a significant level (approximately 4% of splenic CD8(+) T cells) in mice in response to infection; 2) the response to this epitope correlates with clearance of the organism from infected mice; and 3) immunization with recombinant vaccinia virus expressing CrpA elicits partial protective immunity to subsequent i.v. challenge with C. trachomatis.  相似文献   
165.
Virus-specific cytotoxic T lymphocytes (CTL) exert intense selection pressure on replicating simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) in infected individuals. The immunodominant Mamu-A(*)01-restricted Gag p11C, C-M epitope is highly conserved among all sequenced isolates of SIV and therefore likely is structurally constrained. The strategies used by virus isolates to mutate away from an immunodominant epitope-specific CTL response are not well defined. Here we demonstrate that the emergence of a position 2 p11C, C-M epitope substitution (T47I) in a simian-human immunodeficiency virus (SHIV) strain 89.6P-infected Mamu-A(*)01(+) monkey is temporally correlated with the emergence of a flanking isoleucine-to-valine substitution at position 71 (I71V) of the capsid protein. An analysis of the SIV and HIV-2 sequences from the Los Alamos HIV Sequence Database revealed a significant association between any position 2 p11C, C-M epitope mutation and the I71V mutation. The T47I mutation alone is associated with significant decreases in viral protein expression, infectivity, and replication, and these deficiencies are restored to wild-type levels with the introduction of the flanking I71V mutation. Together, these data suggest that a compensatory mutation is selected for in SHIV strain 89.6P to facilitate the escape of that virus from CTL recognition of the dominant p11C, C-M epitope.  相似文献   
166.
Deletion of selenoprotein P alters distribution of selenium in the mouse   总被引:15,自引:0,他引:15  
Selenoprotein P (Se-P) contains most of the selenium in plasma. Its function is not known. Mice with the Se-P gene deleted (Sepp(-/-)) were generated. Two phenotypes were observed: 1) Sepp(-/-) mice lost weight and developed poor motor coordination when fed diets with selenium below 0.1 mg/kg, and 2) male Sepp(-/-) mice had sharply reduced fertility. Weanling male Sepp(+/+), Sepp(+/-), and Sepp(-/-) mice were fed diets for 8 weeks containing <0.02-2 mg selenium/kg. Sepp(+/+) and Sepp(+/-) mice had similar selenium concentrations in all tissues except plasma where a gene-dose effect on Se-P was observed. Liver selenium was unaffected by Se-P deletion except that it increased when dietary selenium was below 0.1 mg/kg. Selenium in other tissues exhibited a continuum of responses to Se-P deletion. Testis selenium was depressed to 19% in mice fed an 0.1 mg selenium/kg diet and did not rise to Sepp(+/+) levels even with a dietary selenium of 2 mg/kg. Brain selenium was depressed to 43%, but feeding 2 mg selenium/kg diet raised it to Sepp(+/+) levels. Kidney was depressed to 76% and reached Sepp(+/+) levels on an 0.25 mg selenium/kg diet. Heart selenium was not affected. These results suggest that the Sepp(-/-) phenotypes were caused by low selenium in testis and brain. They strongly suggest that Se-P from liver provides selenium to several tissues, especially testis and brain. Further, they indicate that transport forms of selenium other than Se-P exist because selenium levels of all tissues except testis responded to increases of dietary selenium in Sepp(-/-) mice.  相似文献   
167.
Human type 1 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD/isomerase) catalyzes the two sequential enzyme reactions on a single protein that converts dehydroepiandrosterone or pregnenolone to androstenedione or progesterone, respectively, in placenta, mammary gland, breast tumors, prostate, prostate tumors, and other peripheral tissues. Our earlier studies show that the two enzyme reactions are linked by the coenzyme product, NADH, of the 3 beta-HSD activity. NADH activates the isomerase activity by inducing a time-dependent conformational change in the enzyme protein. The current study tested the hypothesis that the 3 beta-HSD and isomerase activities shared a common coenzyme domain, and it characterized key amino acids that participated in coenzyme binding and the isomerase reaction. Homology modeling with UDP-galactose-4-epimerase predicts that Asp36 is responsible for the NAD(H) specificity of human 3 beta-HSD/isomerase and identifies the Rossmann-fold coenzyme domain at the amino terminus. The D36A/K37R mutant in the potential coenzyme domain and the D241N, D257L, D258L, and D265N mutants in the potential isomerase domain (previously identified by affinity labeling) were created, expressed, and purified. The D36A/K37R mutant shifts the cofactor preference of both 3 beta-HSD and isomerase from NAD(H) to NADP(H), which shows that the two activities utilize a common coenzyme domain. The D257L and D258L mutations eliminate isomerase activity, whereas the D241N and D265N mutants have nearly full isomerase activity. Kinetic analyses and pH dependence studies showed that either Asp257 or Asp258 plays a catalytic role in the isomerization reaction. These observations further characterize the structure/function relationships of human 3 beta-HSD/isomerase and bring us closer to the goal of selectively inhibiting the type 1 enzyme in placenta (to control the timing of labor) or in hormone-sensitive breast tumors (to slow their growth).  相似文献   
168.
169.
Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I', (residues 101-363 deleted), and IpaC Delta H (residues 63-170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261-363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed.  相似文献   
170.
Store-operated calcium channels (SOC) play a central role in cellular calcium homeostasis. Although it is well established that SOC are activated by depletion of the endoplasmic reticulum calcium stores, the molecular mechanism underlying this effect remains ill defined. It has been suggested that SOC activation requires fusion of endomembrane vesicles with the plasmalemma. In this model, SNARE-dependent exocytosis is proposed to deliver channels or their activators to the surface membrane to initiate calcium influx. To test this hypothesis, we studied the requirement for membrane fusion events in SOC activation, using a variety of dominant-negative constructs and toxins that interfere with SNARE function. Botulinum neurotoxin A (BotA), which cleaves SNAP-25, did not prevent SOC activation. Moreover, SNAP-25 was not detectable in the cells where BotA was reported earlier to inhibit SOC. Instead, the BotA-insensitive SNAP-23 was present. Impairment of VAMP function was similarly without effect on SOC opening. We also tested the role of N-ethylmaleimide-sensitive factor, a global regulator of SNARE-mediated membrane fusion. Expression of a mutated N-ethylmaleimide-sensitive factor construct inhibited all aspects of membrane traffic tested, including recycling of transferrin receptors to the plasma membrane, fusion of endosomes with lysosomes, and retrograde traffic to the Golgi complex. Despite this global inhibition of vesicular fusion, which was accompanied by gross alterations in cell morphology, SOC activation persisted. These observations cannot be easily reconciled with the vesicle-mediated coupling hypothesis of SOC activation. Our findings imply that the SOC and the machinery necessary to activate them exist in the plasma membrane or are associated with it prior to activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号