首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3325篇
  免费   299篇
  国内免费   4篇
  2023年   15篇
  2022年   30篇
  2021年   55篇
  2020年   35篇
  2019年   34篇
  2018年   42篇
  2017年   41篇
  2016年   94篇
  2015年   162篇
  2014年   184篇
  2013年   213篇
  2012年   253篇
  2011年   270篇
  2010年   175篇
  2009年   162篇
  2008年   190篇
  2007年   215篇
  2006年   207篇
  2005年   201篇
  2004年   185篇
  2003年   162篇
  2002年   165篇
  2001年   40篇
  2000年   25篇
  1999年   25篇
  1998年   51篇
  1997年   30篇
  1996年   32篇
  1995年   31篇
  1994年   15篇
  1993年   31篇
  1992年   16篇
  1991年   23篇
  1990年   18篇
  1989年   8篇
  1988年   15篇
  1987年   15篇
  1986年   18篇
  1985年   6篇
  1984年   19篇
  1983年   13篇
  1982年   19篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1976年   8篇
  1972年   8篇
  1971年   6篇
  1970年   6篇
排序方式: 共有3628条查询结果,搜索用时 187 毫秒
161.
Deletion of selenoprotein P alters distribution of selenium in the mouse   总被引:15,自引:0,他引:15  
Selenoprotein P (Se-P) contains most of the selenium in plasma. Its function is not known. Mice with the Se-P gene deleted (Sepp(-/-)) were generated. Two phenotypes were observed: 1) Sepp(-/-) mice lost weight and developed poor motor coordination when fed diets with selenium below 0.1 mg/kg, and 2) male Sepp(-/-) mice had sharply reduced fertility. Weanling male Sepp(+/+), Sepp(+/-), and Sepp(-/-) mice were fed diets for 8 weeks containing <0.02-2 mg selenium/kg. Sepp(+/+) and Sepp(+/-) mice had similar selenium concentrations in all tissues except plasma where a gene-dose effect on Se-P was observed. Liver selenium was unaffected by Se-P deletion except that it increased when dietary selenium was below 0.1 mg/kg. Selenium in other tissues exhibited a continuum of responses to Se-P deletion. Testis selenium was depressed to 19% in mice fed an 0.1 mg selenium/kg diet and did not rise to Sepp(+/+) levels even with a dietary selenium of 2 mg/kg. Brain selenium was depressed to 43%, but feeding 2 mg selenium/kg diet raised it to Sepp(+/+) levels. Kidney was depressed to 76% and reached Sepp(+/+) levels on an 0.25 mg selenium/kg diet. Heart selenium was not affected. These results suggest that the Sepp(-/-) phenotypes were caused by low selenium in testis and brain. They strongly suggest that Se-P from liver provides selenium to several tissues, especially testis and brain. Further, they indicate that transport forms of selenium other than Se-P exist because selenium levels of all tissues except testis responded to increases of dietary selenium in Sepp(-/-) mice.  相似文献   
162.
Human type 1 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD/isomerase) catalyzes the two sequential enzyme reactions on a single protein that converts dehydroepiandrosterone or pregnenolone to androstenedione or progesterone, respectively, in placenta, mammary gland, breast tumors, prostate, prostate tumors, and other peripheral tissues. Our earlier studies show that the two enzyme reactions are linked by the coenzyme product, NADH, of the 3 beta-HSD activity. NADH activates the isomerase activity by inducing a time-dependent conformational change in the enzyme protein. The current study tested the hypothesis that the 3 beta-HSD and isomerase activities shared a common coenzyme domain, and it characterized key amino acids that participated in coenzyme binding and the isomerase reaction. Homology modeling with UDP-galactose-4-epimerase predicts that Asp36 is responsible for the NAD(H) specificity of human 3 beta-HSD/isomerase and identifies the Rossmann-fold coenzyme domain at the amino terminus. The D36A/K37R mutant in the potential coenzyme domain and the D241N, D257L, D258L, and D265N mutants in the potential isomerase domain (previously identified by affinity labeling) were created, expressed, and purified. The D36A/K37R mutant shifts the cofactor preference of both 3 beta-HSD and isomerase from NAD(H) to NADP(H), which shows that the two activities utilize a common coenzyme domain. The D257L and D258L mutations eliminate isomerase activity, whereas the D241N and D265N mutants have nearly full isomerase activity. Kinetic analyses and pH dependence studies showed that either Asp257 or Asp258 plays a catalytic role in the isomerization reaction. These observations further characterize the structure/function relationships of human 3 beta-HSD/isomerase and bring us closer to the goal of selectively inhibiting the type 1 enzyme in placenta (to control the timing of labor) or in hormone-sensitive breast tumors (to slow their growth).  相似文献   
163.
164.
Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I', (residues 101-363 deleted), and IpaC Delta H (residues 63-170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261-363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed.  相似文献   
165.
Store-operated calcium channels (SOC) play a central role in cellular calcium homeostasis. Although it is well established that SOC are activated by depletion of the endoplasmic reticulum calcium stores, the molecular mechanism underlying this effect remains ill defined. It has been suggested that SOC activation requires fusion of endomembrane vesicles with the plasmalemma. In this model, SNARE-dependent exocytosis is proposed to deliver channels or their activators to the surface membrane to initiate calcium influx. To test this hypothesis, we studied the requirement for membrane fusion events in SOC activation, using a variety of dominant-negative constructs and toxins that interfere with SNARE function. Botulinum neurotoxin A (BotA), which cleaves SNAP-25, did not prevent SOC activation. Moreover, SNAP-25 was not detectable in the cells where BotA was reported earlier to inhibit SOC. Instead, the BotA-insensitive SNAP-23 was present. Impairment of VAMP function was similarly without effect on SOC opening. We also tested the role of N-ethylmaleimide-sensitive factor, a global regulator of SNARE-mediated membrane fusion. Expression of a mutated N-ethylmaleimide-sensitive factor construct inhibited all aspects of membrane traffic tested, including recycling of transferrin receptors to the plasma membrane, fusion of endosomes with lysosomes, and retrograde traffic to the Golgi complex. Despite this global inhibition of vesicular fusion, which was accompanied by gross alterations in cell morphology, SOC activation persisted. These observations cannot be easily reconciled with the vesicle-mediated coupling hypothesis of SOC activation. Our findings imply that the SOC and the machinery necessary to activate them exist in the plasma membrane or are associated with it prior to activation.  相似文献   
166.
167.
Pacific tree frogs Hyla regilla are typically either green or brown in dorsal coloration. The frequency of green and brown individuals is known to fluctuate seasonally. Previous investigators have generally assumed that the green and brown body colors represent a "fixed" polymorphism and that seasonal changes in the proportion of the two body colors are a consequence of differential survival of the two color morphs. Here we report that, in addition to the "fixed" (i.e., non-color-changing) green and brown morphs of H. regilla, there are some individuals that can change hue between green and brown. The distribution of color-change ability in our study population is bimodal, suggesting that "color changers" are a distinct morph rather than one extreme of a continuous distribution of color-change ability. Our findings suggest that background brightness, not hue, triggers color change in the newly discovered morph and that this change requires days to weeks to occur. Such slow color change is not well suited for making short-term changes in color as a frog moves between differently colored substrates. Rather, seasonal changes in habitat characteristics and/or microhabitat use are likely to maintain color-change ability. Color polymorphism and color-change ability appear to represent alternative responses to divergent selection for crypsis in a heterogeneous, seasonally variable environment.  相似文献   
168.
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.  相似文献   
169.
Protein kinase C(alpha) (PKC(alpha)) is a key enzyme regulating the physiology of cells and their growth, differentiation, and apoptosis. PKC activity is known to be modulated by all-trans retinoic acid (atRA), although neither the action mechanism nor even the possible binding to PKCs has been established. Crystals of the C2-domain of PKC(alpha), a regulatory module in the protein that binds Ca(2+) and acidic phospholipids, have now been obtained by cocrystallization with atRA. The crystal structure, refined at 2.0 A resolution, shows that RA binds to the C2-domain in two locations coincident with the two binding sites previously reported for acidic phospholipids. The first binding site corresponds to the Ca(2+)-binding pocket, where Ca(2+) ions mediate the interactions of atRA with the protein, as they do with acidic phospholipids. The second binding site corresponds to the conserved lysine-rich cluster localized in beta-strands three and four. These observations are strongly supported by [(3)H]-atRA-binding experiments combined with site-directed mutagenesis. Wild-type C2-domain binds 2 mol of atRA per mol of protein, while the rate reduces to one in the case of C2-domain variants, in which mutations affect either Ca(2+) coordination or the integrity of the lysine-rich cluster site. Competition between atRA and acidic phospholipids to bind to PKC is a possible mechanism for modulating PKC(alpha) activity.  相似文献   
170.
Many proteins with novel functions were created by exon shuffling around the time of the metazoan radiation. Phospholipase C-gamma (PLC-gamma) is typical of proteins that appeared at this time, containing several different modules that probably originated elsewhere. To gain insight into both PLC-gamma evolution and structure-function relationships within the Drosophila PLC-gamma encoded by small wing (sl), we cloned and sequenced the PLC-gamma homologs from Drosophila pseudoobscura and D. virilis and compared their gene structure and predicted amino acid sequences with PLC-gamma homologs in other animals. PLC-gamma has been well conserved throughout, although structural differences suggest that the role of tyrosine phosphorylation in enzyme activation differs between vertebrates and invertebrates. Comparison of intron positions demonstrates that extensive intron loss has occurred during invertebrate evolution and also reveals the presence of conserved introns in both the N- and C-terminal PLC-gamma SH2 domains that are present in SH2 domains in many other genes. These and other conserved SH2 introns suggest that the SH2 domains in PLC-gamma are derived from an ancestral domain that was shuffled not only into PLC-gamma, but also into many other unrelated genes during animal evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号