首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   23篇
  165篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   14篇
  2002年   4篇
  2001年   7篇
  2000年   1篇
  1999年   7篇
  1998年   10篇
  1997年   2篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1958年   2篇
  1956年   1篇
  1953年   1篇
  1952年   1篇
  1943年   1篇
  1934年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
21.
Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenk?rper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.  相似文献   
22.
Ashbya gossypii is a riboflavin-overproducing filamentous fungus that is closely related to unicellular yeasts such as Saccharomyces cerevisiae. With its close ties to yeast and the ease of genetic manipulation in this fungal species, A. gossypii is well suited as a model to elucidate the regulatory networks that govern the functional differences between filamentous growth and yeast growth, especially now that the A. gossypii genome sequence has been completed. Understanding these networks could be relevant to related dimorphic yeasts such as the human fungal pathogen Candida albicans, in which a switch in morphology from the yeast to the filamentous form in response to specific environmental stimuli is important for virulence.  相似文献   
23.
24.
Fungi generally display either of two growth modes, yeast-like or filamentous, whereas dimorphic fungi, upon environmental stimuli, are able to switch between the yeast-like and the filamentous growth mode. Signal transduction pathways have been elucidated in the budding yeast Saccharomyces cerevisiae, establishing a morphogenetic network that links cell-cycle events with cellular morphogenesis. Recent molecular genetic studies in several filamentous fungal model systems revealed key components required for distinct steps from fungal spore germination to the maintenance of polar hyphal growth, mycelium formation, and nuclear division. This allows a mechanistic comparison of yeast-like and hyphal growth and the establishment of a core model morphogenetic network for filamentous growth including signaling via the cAMP pathway, Rho modules, and cell cycle kinases. Appreciating similarities between morphogenetic networks of the unicellular yeasts and the multicellular filamentous fungi will open new research directions, help in isolating the central network components, and ultimately pave the way to elucidate the central differences (of many) that distinguish, e.g., the growth mode of filamentous fungi from that of their yeast-like relatives, the role of cAMP signaling, and nuclear division.  相似文献   
25.
26.
27.
28.
Endocytosis of receptors at the plasma membrane is controlled by a complex mechanism that includes clathrin, adaptors, and actin regulators. Many of these proteins are conserved in yeast yet lack observable mutant phenotypes, which suggests that yeast endocytosis may be subject to different regulatory mechanisms. Here, we have systematically defined genes required for internalization using a quantitative genome-wide screen that monitors localization of the yeast vesicle-associated membrane protein (VAMP)/synaptobrevin homologue Snc1. Genetic interaction mapping was used to place these genes into functional modules containing known and novel endocytic regulators, and cargo selectivity was evaluated by an array-based comparative analysis. We demonstrate that clathrin and the yeast AP180 clathrin adaptor proteins have a cargo-specific role in Snc1 internalization. We additionally identify low dye binding 17 (LDB17) as a novel conserved component of the endocytic machinery. Ldb17 is recruited to cortical actin patches before actin polymerization and regulates normal coat dynamics and actin assembly. Our findings highlight the conserved machinery and reveal novel mechanisms that underlie endocytic internalization.  相似文献   
29.
Epsin is part of a protein complex that performs endocytosis in eukaryotes. Drosophila epsin, Liquid facets (Lqf), was identified because it is essential for patterning the eye and other imaginal disc derivatives [2]. Previous work has provided only indirect evidence that Lqf is required for endocytosis in Drosophila [2, 3]. Epsins are modular and have an N-terminal ENTH (epsin N-terminal homology) domain that binds PIP(2) at the cell membrane and four different classes of protein-protein interaction motifs. The current model for epsin function in higher eukaryotes is that epsin bridges the cell membrane, a transmembrane protein to be internalized, and the core endocytic complex. Here, we show directly that Drosophila epsin (Lqf) is required for endocytosis. Specifically, we find that Lqf is essential for internalization of the Delta (Dl) transmembrane ligand in the developing eye. Using this endocytic defect in lqf mutants, we develop a transgene rescue assay and perform a structure/function analysis of Lqf. We find that when we divide Lqf into two pieces, an ENTH domain and an ENTH-less protein, each part retains significant ability to function in Dl internalization and eye patterning. These results challenge the model for epsin function that requires an intact protein.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号