This study aimed to confirm whether strain ratio should be added after evaluation of lesions with 5-point elasticity scoring for differentiating benign and malignant breast lesions on ultrasonographic elastography(UE).
Materials and Methods
From June 2010 to March 2012, 1080 consecutive female patients with breast lesions were recruited into a multicenter retrospective study, which involved 8 centers across China. Each institutional ethic review board approved the study, and all the patients gave written informed consent. All the patients underwent the UE procedure and the strain ratios were calculated and the final diagnosis was made by histological findings. The sensitivity, specificity, accuracy, PPV and NPV were calculated for each of the two evaluation systems and the areas under the ROC curve were compared.
Results
The strain ratios of benign lesions (mean, 2.6±2.0) and malignant lesions (mean,7.9±5.8) were significantly different (p <0.01). When the cutoff point was 3.01, strain ratio method had 79.8% sensitivity, 82.8% specificity, and 81.3% accuracy, while the 5-point scoring method had 93.1% sensitivity, 73.0% specificity, and 76.8% accuracy. The areas under the ROC curve with the strain ratio method and 5-point scoring method were 0.863 and 0.865, respectively(p>0.05). The strain ratio method shows better a diagnosis performance of the lesions with elasticity score 3 and 4.
Conclusions
Although the two UE methods have similar diagnostic performance, separate calculation of the strain ratios seems compulsory, especially for the large solid breast lesions and the lesions with elasticity score 3 and 4. 相似文献
Pikahei-1(t) is the strongest quantitative trait locus (QTL) for blast resistance in upland rice cv. Kahei, which has strong field resistance to the rice blast disease. A high-quality bacterial artificial chromosome library was used to fine-map Pikahei-1(t) within ~300 kb on the 31-Mb region on rice chromosome 4. Of the 42 predicted open reading frames, seven resistance gene analogs (RGAs) with the nucleotide-binding site and leucine-rich repeat (NBS-LRR) domain were identified. Among these, RGA1, 2, 3, 5, and 7, but not RGA4 and 6, were found to be expressed in Kahei and monogenic lines containing Pikahei-1(t). Blast inoculation of transgenic rice lines carrying the genomic fragment of each RGA revealed that only RGA3 was associated with blast resistance. On the basis of these results, we concluded that RGA3 is the Pikahei-1(t) and named it Pi63. Pi63 encoded a typical coiled-coil-NBS-LRR protein and showed isolate-specificity. These results suggest that Pi63 behaves like a typical Resistance (R) gene, and the strong and broad-spectrum resistance of Kahei is dependent on natural pyramiding of multiple QTLs. The blast resistance levels of Pi63 were closely correlated with its gene expression levels, indicating a dose-dependent response of Pi63 function in rice resistance. Pi63 is the first cloned R gene in the R gene cluster on rice chromosome 4, and its cloning might facilitate genomic dissection of this cluster region. 相似文献
The moose (Alces alces cameloides) population in northeastern China is on the southernmost edge of its distribution in Asia. A survey was conducted to determine
moose resource selection and the effects of human disturbance on moose in a study area of 20,661 ha located on the northwestern
slope of the Lesser Khingan Mountains, located in northeastern China. Predictive models of resource selection were developed
using logistic and autologistic regression. All models considered resource variable selection at two spatial scales, patch
and landscape. At the patch scale, moose preferred larger birch (Betula platyphylla) patches, but avoided larger tamarack (Larix gmelinii) patches. At the landscape scale, moose preferred higher densities of tamarack patches, i.e., heterogeneity of tamarack stands,
selected areas with more abundant annual shoots, terrain conducive to better concealment, higher altitudes and areas saturated
with soil moisture. Roads and forest harvest intervals were identified as important human disturbance factors. This is the
first time that moose have been reported to avoid roads, and the avoidance distance was nearly 3 km. We believe that in this
region moose under the influence of roads are behaviorally plastic, compared with the indifference of moose to the presence
of roads in other regions. Moose avoided forest areas logged more than 3 years previously and preferred areas logged 1–2 years
previously. In addition, it may be necessary to monitor the effect of the dynamic of density of roe deer on the spatial distribution
of the moose population. 相似文献
Ubiquitylation plays key roles in DNA damage signal transduction. The current model envisions that lysine63-linked ubiquitin chains, via the concerted action of E3 ubiquitin ligases RNF8-RNF168, are built at DNA double-strand breaks (DSBs) to effectively assemble DNA damage-repair factors for proper checkpoint control and DNA repair. We found that RNF168 is a short-lived protein that is stabilized by the deubiquitylating enzyme USP34 in response to DNA damage. In the absence of USP34, RNF168 is rapidly degraded, resulting in attenuated DSB-associated ubiquitylation, defective recruitment of BRCA1 and 53BP1 and compromised cell survival after ionizing radiation. We propose that USP34 promotes a feed-forward loop to enforce ubiquitin signaling at DSBs and highlight critical roles of ubiquitin dynamics in genome stability maintenance. 相似文献
In the vasculature, physiological levels of nitric oxide (NO) protect against various stressors, including mechanical stretch. While endothelial NO production in response to various stimuli has been studied extensively, the precise mechanism underlying stretch-induced NO production in venous endothelial cells remains incompletely understood. Using a model of continuous cellular stretch, we found that stretch promoted phosphorylation of endothelial NO synthase (eNOS) at Ser1177, Ser633 and Ser615 and NO production in human umbilical vein endothelial cells. Although stretch activated the kinases AMPKα, PKA, Akt, and ERK1/2, stretch-induced eNOS activation was only inhibited by kinase-specific inhibitors of PKA and PI3K/Akt, but not of AMPKα and Erk1/2. Similar results were obtained with knockdown by shRNAs targeting the PKA and Akt genes. Furthermore, inhibition of PKA preferentially attenuated eNOS activation in the early phase, while inhibition of the PI3K/Akt pathway reduced eNOS activation in the late phase, suggesting that the PKA and PI3K/Akt pathways play distinct roles in a time-dependent manner. Finally, we investigated the role of these pathways in stretch-induced endothelial exocytosis and leukocyte adhesion. Interestingly, we found that inhibition of the PI3K/Akt pathway increased stretch-induced Weibel-Palade body exocytosis and leukocyte adhesion, while inhibition of the PKA pathway had the opposite effects, suggesting that the exocytosis-promoting effect of PKA overwhelms the inhibitory effect of PKA-mediated NO production. Taken together, the results suggest that PKA and Akt are important regulators of eNOS activation in venous endothelial cells under mechanical stretch, while playing different roles in the regulation of stretch-induced endothelial exocytosis and leukocyte adhesion. 相似文献
Recent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are maintained between the primary tumor and the patient-derived tumor models. Here, we report the comprehensive identification of somatic coding mutations and copy number aberrations in four glioblastoma (GBM) primary tumors and their matched pre-clinical models: serum-free neurospheres, adherent cell cultures, and mouse xenografts. We developed innovative methods to improve the data quality and allow a strict comparison of matched tumor samples. Our analysis identifies known GBM mutations altering PTEN and TP53 genes, and new actionable mutations such as the loss of PIK3R1, and reveals clear patient-to-patient differences. In contrast, for each patient, we do not observe any significant remodeling of the mutational profile between primary to model tumors and the few discrepancies can be attributed to stochastic errors or differences in sample purity. Similarly, we observe ∼96% primary-to-model concordance in copy number calls in the high-cellularity samples. In contrast to previous reports based on gene expression profiles, we do not observe significant differences at the DNA level between in vitro compared to in vivo models. This study suggests, at a remarkable resolution, the genome-wide conservation of a patient’s tumor genetics in various pre-clinical models, and therefore supports their use for the development and testing of personalized targeted therapies. 相似文献
A Gram-stain-positive, orange-pigmented, rod-shaped and flagellated bacterial strain T12T was isolated from wetland soil in Kunyu Mountain Wetland in Yantai, China. The strain was able to grow at 15–40 °C (optimum 37 °C), at 0.0–9.0% NaCl (optimum 2%, w/v) and at pH 5.5–9.0 (optimum 8.5). A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain T12T is a member of the family Planococcaceae, sharing 97.6% and 97.1% sequence similarity with the type strains of Jeotgalibacillus salarius and Jeotgalibacillus marinus, respectively. Genome-based analyses revealed a genome size of 3,506,682 bp and a DNA G?+?C content of 43.7%. Besides, the genome sequence led to 55.0–74.6% average amino acid identity values and 67.8–74.7% average nucleotide identity values between strain T12T and the current closest relatives. Digital DNA-DNA hybridization of strain T12T with the type strains of Jeotgalibacillus proteolyticus and J. marinus demonstrated 19.0% and 20.3% relatedness, respectively. The chemotaxonomic analysis showed that the sole quinone was MK-7. The predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, C16:1ω7c alcohol and iso-C14:0. The polar lipids consisted of an unidentified aminolipid, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Based on the polyphasic characterization, strain T12T is considered to represent a novel species, for which the name Jeotgalibacillus aurantiacus sp. nov. is proposed. The type strain is T12T (=?KCTC 43296 T?=?MCCC 1K07171T).