首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
  国内免费   2篇
  152篇
  2019年   2篇
  2017年   2篇
  2015年   4篇
  2013年   3篇
  2012年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   5篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
51.
The quantitative distribution of corticotropin-releasing hormone (CRH) in the brain and pituitary of the fish Oreochromis mossambicus (tilapia) was studied following the validation of a radioimmunoassay. Compared to the pituitary content, the brain contained 20 times more CRH. Eighty percent of the total brain content was located outside the hypothalamus, particularly in the telencephalon. Substantial amounts of CRH were also present in other regions devoid of hypophysiotropic neurons, such as the vagal lobe and optic tectum. Telencephalic and pituitary CRH co-eluted with the tilapia CRH(1-41)standard on reverse phase HPLC. In vitro CRH release by the telencephalon amounted to 5% of its content per hour, whereas release from the pituitary was negligible. We conclude that CRH in the brain of tilapia regulates pituitary and non-pituitary related functions, probably as a neurotransmitter or neuromodulator.  相似文献   
52.
Summary A combined immunocytochemical and morphometric study on the development of the prolactin (PRL) cells of the annual cyprinodont Cynolebias whitei, transferred as newly hatched larvae to water with different salinities and/or Ca2+-concentrations, was carried out. The percentage of the pituitary volume occupied by PRL cells and the affinity of PRL cells for immunocytochemical staining were used as criteria for their activity. Exposure of the larvae for one day to salt water (260 mOsm/kg) led to a significant reduction in the pituitary volume occupied by PRL cells, indicating an osmoregulatory function of PRL shortly after hatching. In fish reared in diluted artificial seawater (70 and 260 mOsm/kg) or Na+-enriched fresh water the development of PRL cells was significantly retarded, but such an effect was not observed in fish placed in Ca2+-enriched fresh water. These experiments show that in C. whitei the development and activity of PRL cells are influenced by changes in environmental osmolarity and not by changes in ambient Ca2+-concentration.  相似文献   
53.
The ultrastructure of club cells and neighbouring filament cells and leucocytes in the epidermis of carp, was studied under normal conditions and after exposure to several stressors: acid water, heavy metals, organic manure, brackish water and wounding. The effects of the stressors were remarkably similar. The club cells increased in size and contained more endoplasmic reticulum and Golgi areas. In both control and stressed fish, most mitotic figures of the filament cells were found adjacent to club cells, as was demonstrated after colchicine injection. Whereas in the controls apoptosis of filament cells was scarce and limited to the upper layer of the epithelium, in the stressed fish it was commonly seen in close proximity to the club cells but not in other mid-epidermal parts of the epithelium. This indicates that club cells influence the cellular kinetics of the filament cells. Under stress conditions leucocytes infiltrated the epidermis. Some were seen inside club cells. Apparently these leucocytes were taken up in phagosomes and subsequently they showed signs of necrotic degeneration. Leucocyte incorporation and degeneration in club cells were not observed in control fish. Control of the cellular turnover of filament cells and the elimination of leucocytes may represent new functions for club cells, which have mainly been associated with the production of pheromones.  相似文献   
54.
Summary Branchial chloride cells, which actively take up ions in the gills of freshwater fish, were studied in tilapia (Oreochromis mossambicus) exposed to sublethally acidified freshwater. Structural damage of cells, resulting in cell death by necrosis, only occurred transiently, when the reduction of water pH was acute rather than gradual. The most prominent effects of water acidification were the rapid increase in the number of chloride cells and the changes in frequency of the different stages of the chloride cell cycle. In the opercular inner epithelium, a twofold increase in cells occurred 48 h after gradual acidification. Cell density stabilized after 4 weeks at a level 5 times that of control fish. Four transitory stages were distinguished in the chloride cell cycle: accessory or replacement cells, immature, mature, and degenerating (apoptotic) cells. In control fish, mature chloride cells dominated (over 50%) with immature and apoptotic cells totalling about 40%. After 4 weeks in acid water, only 13% of the cells were mature. Immature and apoptotic cells dominated, each representing about 40% of the total number of chloride cells. Mature cells apparently age rapidly under these conditions. Thus, chloride cells turn over quickly in acid water, with a minor increase in ion transport capacity of the gills. This conclusion is supported by the observation that opercular and branchial Na+/K+ ATPase activities in treated fish are only 40%–50% higher than in controls.  相似文献   
55.
During a study of the development of callus from immature microsporophylls and megagametophytes of Pinus spp. (Bonga 1974), tissue squashes were stained with aceto-carmine (Gerlach 1969). However, this stain had some drawbacks. The cells and nuclei formed in the pollen and pollen tubes during the early stages of culture were often obscured by large numbers of granules (cf. Christiansen 1973), and often, small groups of small vigorous cells within the callus failed to stain.  相似文献   
56.
Recalcitrance in clonal propagation,in particular of conifers   总被引:2,自引:0,他引:2  
Despite major advances in forest biotechnology, clonal regeneration by somatic embryogenesis or organogenesis is still difficult for many woody species and is often limited to the use of juvenile explants. Adventitious regeneration of plants from gymnosperms older than zygotic embryos, and frequently even from highly immature zygotic embryos, is often difficult or has not yet been achieved. A number of experimental approaches that could eventually lead to overcoming recalcitrance are suggested in this review. When cloning trees of various ages, it is important to determine first which part of the individual contains the most responsive cells and at what time of the year these cells are in the most responsive state. This allows selection of the most useful explants. In hardwood trees and a few gymnosperms, responsive tissues are found in root or stump sprouts and in tissues near the site of meiosis at about the time that meiosis takes place. Another potentially active area is the shoot apex with most or all of its leaf or needle primordia removed. Apomixis is a natural form of clonal regeneration but occurs naturally in only one gymnosperm species. As the genetic mechanism of apomixis has been in part elucidated, the induction of apomixis by experimental means may soon be possible. The cytoplasm plays a major role in the expression or repression of nuclear genes that control embryogenesis. Expression of nuclear genes can be manipulated by nuclear transfer into de-nucleated cells (e.g., the cytoplasm of egg cells). Cytoplasmic control also plays a role in regeneration by androgenesis, asymmetric cell division and cell isolation. A short overview is presented of the genetic mechanisms involved in embryo initiation, maturation and germination and how manipulation of these mechanisms by genetic transformation could help in overcoming recalcitrance. It is expected that rapid development in the fields of research areas discussed in this review will over time eliminate the problem of recalcitrance in many instances where it is currently prevalent.  相似文献   
57.
During 2002–2004, three laboratories in Canada and France collaborated to improve initiation of somatic embryogenesis (SE) in jack pine (Pinus banksiana Lamb.), eastern white pine (P. strobus L.), maritime pine (P. pinaster Ait.), and Scots pine (P.␣sylvestris L.), giving particular attention to the effects of (1) N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) versus various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and benzyladenine (BA), (2) differences in basal nutrient media, i.e., macro- and microelements, and (3) gelling agent concentration. The work was carried out separately at␣each laboratory, but the details of media compositions were shared and tested on their respective species. Results indicate that the developmental stage of the zygotic embryo (ZE) and genotype effects had a large influence on SE initiation, and that genetic effects were consistent over time. Different species responded differently to PGR types and concentration, basal nutrient media, trace elements, and their combinations. Currently, our best initiation rates based on a selected group of genotypes, optimal development stage of ZE, and medium are 3.9% for jack pine, 54.6% for eastern white pine, 76.2% for maritime pine, and 19.7% for Scots pine.  相似文献   
58.
The effects of altering extracellular Ca(2+) levels on the electrical and adaptive properties of toad rods have been examined. The retina was continually superfused in control (1.6 mM Ca(2+)) or test ringer’s solutions, and rod electrical activity was recorded intracellularly. Low-calcium ringer’s (10(-9)M Ca(2+)) superfused for up to 6 min caused a substantial depolarization of the resting membrane potential, an increase in light-evoked response amplitudes, and a change in the waveform of the light-evoked responses. High Ca(2+) ringer’s (3.2 mM) hyperpolarized the cell membrane and decreased response amplitudes. However, under conditions of either low or high Ca(2+) superfusion for up to 6 min, in both dark-adapted and partially light-adapted states, receptor sensitivity was virtually unaffected; i.e., the V-log I curve for the receptor potential was always located on the intensity scale at a position predicted by the prevailing light level, not by Ca(2+) concentration. Thus, we speculate that cytosol Ca(2+) concentration is capable of regulating membrane potential levels and light-evoked response amplitudes, but not the major component of rod sensitivity. Low Ca(2+) ringer’s also shortened the period of receptor response saturation after a bright but nonbleaching light flash, hence accelerating the onset of both membrane potential and sensitivity recovery during dark adaptation.

Exposure of the retina to low Ca(2+) (10(-9)M) ringer’s for long periods (7-15 min) caused dark-adapted rods to lose responsiveness. Response amplitudes gradually decreased, and the rods became desensitized. These severe conditions of low Ca(2+) caused changes in the dark-adapted rod that mimic those observed in rods during light adaptation. We suggest that loss of receptor sensitivity during prolonged exposure to low Ca(2+) ringer’s results from a decrease of intracellular (intradisk) stores of Ca(2+); i.e., less Ca(2+) is thereby released per quantum catch.

  相似文献   
59.
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号