首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   18篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   15篇
  2013年   9篇
  2012年   16篇
  2011年   18篇
  2010年   15篇
  2009年   7篇
  2008年   16篇
  2007年   17篇
  2006年   13篇
  2005年   16篇
  2004年   11篇
  2003年   11篇
  2002年   8篇
  2001年   6篇
  2000年   11篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   8篇
  1989年   8篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1982年   3篇
  1980年   2篇
  1978年   6篇
  1976年   5篇
  1975年   5篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1957年   1篇
  1950年   2篇
  1948年   1篇
排序方式: 共有356条查询结果,搜索用时 477 毫秒
91.
A simple, rapid, accurate, and precise colorimetric assay for the determination of L-phenylalanine in plasma samples using L-phenylalanine dehydrogenase [L-phenylalanine:NAD+-oxidoreductase (deaminating)] from Rhodococcus sp. M 4 is described. The enzyme catalyzes the NAD-dependent oxidative deamination of L-phenylalanine. However, the equilibrium of reaction favors L-phenylalanine formation. By stoichiometric coupling of this reaction with diaphorase/iodonitro tetrazolium chloride (INT) the formed NADH converts INT to a formazan whereby the reaction is displaced in favor of phenylpyruvate. Using a kinetic approach the increase in absorbance at 492 nm shows linearity over more than 30 min. Deproteinized standard solutions of L-phenylalanine in the range from 30 to 1200 mumol/liter show a linearity between the dAformazan/30 min and the substrate concentration. In phenylketonuria (PKU) plasma samples no interferences caused by L-tyrosine or phenylpyruvic acid are seen. Applicability is demonstrated by comparative determination of plasma L-phenylalanine of treated PKU patients by the colorimetric method and automated amino acid analysis.  相似文献   
92.
A new channel of excitation energy deactivation in bacterial light harvesting was recently discovered, which leads to carotenoid triplet population on an ultrafast timescale. Here we show that this mechanism is also active in LH2 of Rhodopseudomonas acidophila through analysis of transient absorption data with an evolutionary target analysis. The algorithm offers flexible testing of kinetic network models with low a priori knowledge requirements. It applies universally to the simultaneous fitting of target state spectra and rate constants to time-wavelength-resolved data. Our best-fit model reproduces correctly the well-known cooling and decay behavior in the S(1) band, but necessitates an additional, clearly distinct singlet state that does not exchange with S(1), promotes ultrafast triplet population and participates in photosynthetic energy transfer.  相似文献   
93.
Rate variation among nuclear genes and the age of polyploidy in Gossypium   总被引:7,自引:0,他引:7  
Molecular evolutionary rate variation in Gossypium (cotton) was characterized using sequence data for 48 nuclear genes from both genomes of allotetraploid cotton, models of its diploid progenitors, and an outgroup. Substitution rates varied widely among the 48 genes, with silent and replacement substitution levels varying from 0.018 to 0.162 and from 0.000 to 0.073, respectively, in comparisons between orthologous Gossypium and outgroup sequences. However, about 90% of the genes had silent substitution rates spanning a more narrow threefold range. Because there was no evidence of rate heterogeneity among lineages for any gene and because rates were highly correlated in independent tests, evolutionary rate is inferred to be a property of each gene or its genetic milieu rather than the clade to which it belongs. Evidence from approximately 200,000 nucleotides (40,000 per genome) suggests that polyploidy in Gossypium led to a modest enhancement in rates of nucleotide substitution. Phylogenetic analysis for each gene yielded the topology expected from organismal history, indicating an absence of gene conversion or recombination among homoeologs subsequent to allopolyploid formation. Using the mean synonymous substitution rate calculated across the 48 genes, allopolyploid cotton is estimated to have formed circa 1.5 million years ago (MYA), after divergence of the diploid progenitors about 6.7 MYA.  相似文献   
94.
Infection remains the major complication of immunosuppressive therapy in organ transplantation. Therefore, reconstitution of the innate immunity against infections, without activation of the adaptive immune responses, to prevent graft rejection is a clinically desirable status in transplant recipients. We found that GM-CSF restored TNF mRNA and protein expression without inducing IL-2 production and T cell proliferation in glucocorticoid-immunosuppressed blood from either healthy donors or liver transplant patients. Gene array experiments indicated that GM-CSF selectively restored a variety of dexamethasone-suppressed, LPS-inducible genes relevant for innate immunity. A possible explanation for the lack of GM-CSF to restore T cell proliferation is its enhancement of the release of IL-1betaR antagonist, rather than of IL-1beta itself, since exogenously added IL-1beta induced an IL-2-independent Con A-stimulated proliferation of glucocorticoid-immunosuppressed lymphocytes. Finally, to test the in vivo relevance of our findings, we showed that GM-CSF restored the survival of dexamethasone- or cyclosporine A-immunosuppressed mice from an otherwise lethal infection with Salmonella typhimurium. In addition to this increased resistance to infection, GM-CSF did not induce graft rejection of a skin allotransplant in cyclosporine A-immunosuppressed mice. The selective restoration potential of GM-CSF suggests its therapeutic use in improving the resistance against infections upon organ transplantation.  相似文献   
95.
Ribosomal ITS sequences and plant phylogenetic inference   总被引:27,自引:0,他引:27  
One of the most popular sequences for phylogenetic inference at the generic and infrageneric levels in plants is the internal transcribed spacer (ITS) region of the 18S-5.8S-26S nuclear ribosomal cistron. The prominence of this source of nuclear DNA sequence data is underscored by a survey of phylogenetic publications involving comparisons at the genus level or below, which reveals that of 244 papers published over the last five years, 66% included ITS sequence data. Perhaps even more striking is the fact that 34% of all published phylogenetic hypothesis have been based exclusively on ITS sequences. Notwithstanding the many important contributions of ITS sequence data to phylogenetic understanding and knowledge of genome relationships, a number of molecular genetic processes impact ITS sequences in ways that may mislead phylogenetic inference. These molecular genetic processes are reviewed here, drawing attention to both underlying mechanism and phylogenetic implications. Among the most prevalent complications for phylogenetic inference is the existence in many plant genomes of extensive sequence variation, arising from ancient or recent array duplication events, genomic harboring of pseudogenes in various states of decay, and/or incomplete intra- or inter-array homogenization. These phenomena separately and collectively create a network of paralogous sequence relationships potentially confounding accurate phylogenetic reconstruction. Homoplasy is shown to be higher in ITS than in other DNA sequence data sets, most likely because of orthology/paralogy conflation, compensatory base changes, problems in alignment due to indel accumulation, sequencing errors, or some combination of these phenomena. Despite the near-universal usage of ITS sequence data in plant phylogenetic studies, its complex and unpredictable evolutionary behavior reduce its utility for phylogenetic analysis. It is suggested that more robust insights are likely to emerge from the use of single-copy or low-copy nuclear genes.  相似文献   
96.
Phylogenetic resolution is often low within groups of recently diverged taxa due to a paucity of phylogenetically informative characters. We tested the relative utility of seven noncoding cpDNA regions and a pair of homoeologous nuclear genes for resolving recent divergences, using tetraploid cottons (Gossypium) as a model system. The five tetraploid species of Gossypium are a monophyletic assemblage derived from an allopolyploidization event that probably occurred within the last 0.5-2 million years. Previous analysis of cpDNA restriction site data provided only partial resolution within this clade despite a large number of enzymes employed. We sequenced three cpDNA introns (rpl16, rpoC1, ndhA) and four cpDNA spacers (accD-psaI, trnL-trnF, trnT-trnL, atpB-rbcL) for a total of over 7 kb of sequence per taxon, yet obtained only four informative nucleotide substitutions (0.05%) resulting in incomplete phylogenetic resolution. In addition, we sequenced a 1.65-kb region of a homoeologous pair of nuclear-encoded alcohol dehydrogenase (Adh) genes. In contrast with the cpDNA sequence data, the Adh homoeologues yielded 25 informative characters (0.76%) and provided a robust and completely resolved topology that is concordant with previous cladistic and phenetic analyses. The enhanced resolution obtained using the nuclear genes reflects an approximately three- to sixfold increase in nucleotide substitution rate relative to the plastome spacers and introns.  相似文献   
97.
During the 1970‘s and 1980‘s, the acidification of surface waters by atmospherically deposited sulphur became a major international concern. Large sulphur emission control programs were implemented in Europe and North America with the expectation that many affected aquatic ecosystems would recover. Because of a variety of factors, these positive expectations have been slow to be realized. Only limited evidence of the chemical recovery of acid lakes has emerged from areas other than the Sudbury, Canada region, where sulphur emission reductions were particularly large. Lake response models indicate that when current sulphur emission control strategies in Europe and North America are fully implemented, many lakes will still be acid-damaged even though substantial overall improvements in lake chemistry are expected. An increasing body of evidence indicates that substantial biological recovery, among many groups of organisms,can be expected when chemical conditions improve in lakes. Not all species, however, are capable of unassisted recovery and some lakes can pose biological or physical barriers to colonizers. Thus, stocking may be an important element in management strategies for the restoration of some recovering lakes. Communities in recovered lakes may not achieve pre disturbance conditions, but establishment of typical communities appears to be a reasonable recovery target. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
98.
99.
In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average ten times that of background binding. This method is rapid and possesses the potential to allow precise ultrastructual localization of DNA sequences in chromosomes and chromatin.  相似文献   
100.
Activation of poly-(ADP-ribose) polymerase (PARP) is often associated with cytotoxicity, but its precise role in shock-induced lethality and in different modes of tissue injury is still unknown. We took advantage of the existence of mice with a targeted deletion of the PARP gene (PARP-/-) to examine the differential sensitivity of wild-type (wt) and PARP-/- mice toward endotoxin (LPS)-induced lethality and different forms of liver damage. All PARP-/- animals survived high-dose (20 mg/kg) LPS-mediated shock, which killed 60% of wt animals. Moreover, LPS-induced necrotic liver damage was significantly reduced. In contrast, when apoptotic liver damage was induced via injection of low concentrations of LPS (30 microgram/kg) into D-galactosamine-sensitized mice, or via activation of hepatic cell death receptors, PARP-/- animals were not protected. We conclude that PARP is involved in systemic LPS toxicity, while it plays a minor role in apoptotic liver damage mediated by TNF or CD95.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号