首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8276篇
  免费   655篇
  国内免费   594篇
  9525篇
  2024年   17篇
  2023年   105篇
  2022年   266篇
  2021年   436篇
  2020年   308篇
  2019年   346篇
  2018年   373篇
  2017年   253篇
  2016年   356篇
  2015年   503篇
  2014年   570篇
  2013年   600篇
  2012年   761篇
  2011年   633篇
  2010年   384篇
  2009年   369篇
  2008年   408篇
  2007年   378篇
  2006年   347篇
  2005年   276篇
  2004年   237篇
  2003年   203篇
  2002年   175篇
  2001年   142篇
  2000年   114篇
  1999年   134篇
  1998年   79篇
  1997年   89篇
  1996年   80篇
  1995年   74篇
  1994年   85篇
  1993年   60篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   26篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9525条查询结果,搜索用时 15 毫秒
191.
Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.  相似文献   
192.
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.  相似文献   
193.
The mechanisms and mediators underlying common renal impairment after myocardial infarction (MI) are still poorly understood. The present study aimed to test the hypothesis that angiotensin II type 1 receptor blockers (ARBs) provides renoprotective effects after MI by preventing augmented intrarenal renin-angiotensin-system (RAS)-induced podocyte injury. Sprague–Dawley rats that underwent ligation of their coronary arteries were treated with losartan (20 mg/kg/d) or vehicle for 3 or 9 weeks. Renal function, histology and molecular changes were assessed. The current study revealed that MI-induced glomerular podocyte injury was identified by increased immunostaining for desmin and p16ink4a, decreased immunostaining for Wilms’ tumor-1 and podocin mRNA expression, and an induced increase of blood cystatin C at both 3 and 9 weeks. These changes were associated with increased intrarenal angiotensin II levels and enhanced expressions of angiotensinogen mRNA and angiotensin II receptor mRNA and protein. These changes were also associated with decreased levels of insulin-like growth factor (IGF-1) and decreased expressions of IGF-1 receptor (IGF-1R) protein and mRNA and phosphorylated(p)-Akt protein at 9 weeks, as well as increased expressions of 8-hydroxy-2’-deoxyguanosine at both time points. Treatment with losartan significantly attenuated desmin- and p16ink4a-positive podocytes, restored podocin mRNA expression, and decreased blood cystatin C levels. Losartan also prevented RAS activation and oxidative stress and restored the IGF-1/IGF-1R/Akt pathway. In conclusion, ARBs prevent the progression of renal impairment after MI via podocyte protection, partially by inhibiting the activation of the local RAS with subsequent enhanced oxidative stress and an inhibited IGF-1/IGF-1R/Akt pathway.  相似文献   
194.
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi‐subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead‐associated domain 2 (FHA2) as a plant‐specific subunit of an ISWI chromatin‐remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early‐flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA‐seq analysis indicated that the fha2 mutant affects a subset of RLT1/2‐regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.  相似文献   
195.
Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar‐free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three‐dimensional network. CTs might play a role in the regeneration of injured myocardium.  相似文献   
196.
He  Ping  Cai  Xiaodan  Chen  Kangming  Fu  Xuelin 《Annals of microbiology》2020,70(1):1-13
The aim of the present study was to investigate the tolerance of five new Achromobacter and Pseudomonas strains to kerosene and to establish if the production of several secondary metabolites increases or not when these bacteria were grown in the presence of kerosene. The biodegradation of kerosene by isolated bacteria was also investigated in this study. Five Proteobacteria were isolated from different samples polluted with petroleum and petroleum products. Based on their morphological, biochemical, and molecular characteristics, isolated bacteria were identified as Achromobacter spanius IBBPo18 and IBBPo21, Pseudomonas putida IBBPo19, and Pseudomonas aeruginosa IBBPo20 and IBBPo22. All these bacteria were able to tolerate and degrade kerosene. Higher tolerance to kerosene and degradation rates were observed for P. aeruginosa IBBPo20 and IBBPo22, compared with that observed for A. spanius IBBPo18 and IBBPo21, and P. putida IBBPo19. All these bacteria were able to produce several secondary metabolites, such as surfactants and pigments. Glycolipid surfactants produced by P. aeruginosa IBBPo20 and IBBPo22, A. spanius IBBPo18 and IBBPo21, and P. putida IBBPo19 have a very good emulsification activity, and their activity increased when they were grown in the presence of kerosene. The production of rhamnolipid surfactants by P. aeruginosa IBBPo20 and IBBPo22 was confirmed by detection of rhlAB gene involved in their biosynthesis. Pyocyanin and pyoverdin pigments were produced only by P. aeruginosa IBBPo20 and IBBPo22, while carotenoid pigments were produced by all the isolated bacteria. Significant changes in pigments production were observed when P. aeruginosa IBBPo20 and IBBPo22, A. spanius IBBPo18 and IBBPo21, and P. putida IBBPo19 were grown in the presence of kerosene. Due to their ability to tolerate and degrade kerosene, and also to produce several secondary metabolites, the isolated bacteria could be used in the bioremediation of kerosene-polluted environments.  相似文献   
197.
198.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   
199.
Radiation protection on male testis is an important task for ionizing radiation-related workers or people who receive radiotherapy for tumours near the testicle. In recent years, Toll-like receptors (TLRs), especially TLR4, have been widely studied as a radiation protection target. In this study, we detected that a low-toxicity TLR4 agonist monophosphoryl lipid A (MPLA) produced obvious radiation protection effects on mice testis. We found that MPLA effectively alleviated testis structure damage and cell apoptosis induced by ionizing radiation (IR). However, as the expression abundance differs a lot in distinct cells and tissues, MPLA seemed not to directly activate TLR4 singling pathway in mice testis. Here, we demonstrated a brand new mechanism for MPLA producing radiation protection effects on testis. We observed a significant activation of TLR4 pathway in macrophages after MPLA stimulation and identified significant changes in macrophage-derived exosomes protein expression. We proved that after MPLA treatment, macrophage-derived exosomes played an important role in testis radiation protection, and specially, G-CSF and MIP-2 in exosomes are the core molecules in this protection effect.  相似文献   
200.
Lithium–sulfur batteries are a promising high energy output solution for substitution of traditional lithium ion batteries. In recent times research in this field has stepped into the exploration of practical applications. However, their applications are impeded by cycling stability and short life‐span mainly due to the notorious polysulfide shuttle effect. In this work, a multifunctional sulfur host fabricated by grafting highly conductive Co3Se4 nanoparticles onto the surface of an N‐doped 3D carbon matrix to inhibit the polysulfide shuttle and improve the sulfur utilization is proposed. By regulating the carbon matrix and the Co3Se4 distribution, N‐CN‐750@Co3Se4‐0.1 m with abundant polar sites is experimentally and theoretically shown to be a good LiPSs absorbent and a sulfur conversion accelerator. The S/N‐CN‐750@Co3Se4‐0.1 m cathode shows excellent sulfur utilization, rate performance, and cyclic durability. A prolonged cycling test of the as‐fabricated S/N‐CN‐750@Co3Se4‐0.1 m cathode is carried out at 0.2 C for more than 5 months which delivers a high initial capacity of 1150.3 mAh g?1 and retains 531.0 mAh g?1 after 800 cycles with an ultralow capacity reduction of 0.067% per cycle, maintaining Coulombic efficiency of more than 99.3%. The reaction details are characterized and analyzed by ex situ measurements. This work highly emphasizes the potential capabilities of transition‐metal selenides in lithium–sulfur batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号