全文获取类型
收费全文 | 5689篇 |
免费 | 429篇 |
国内免费 | 373篇 |
专业分类
6491篇 |
出版年
2024年 | 12篇 |
2023年 | 66篇 |
2022年 | 158篇 |
2021年 | 285篇 |
2020年 | 203篇 |
2019年 | 231篇 |
2018年 | 218篇 |
2017年 | 187篇 |
2016年 | 276篇 |
2015年 | 355篇 |
2014年 | 445篇 |
2013年 | 458篇 |
2012年 | 483篇 |
2011年 | 435篇 |
2010年 | 266篇 |
2009年 | 231篇 |
2008年 | 282篇 |
2007年 | 237篇 |
2006年 | 176篇 |
2005年 | 133篇 |
2004年 | 137篇 |
2003年 | 125篇 |
2002年 | 112篇 |
2001年 | 98篇 |
2000年 | 89篇 |
1999年 | 92篇 |
1998年 | 63篇 |
1997年 | 61篇 |
1996年 | 39篇 |
1995年 | 51篇 |
1994年 | 55篇 |
1993年 | 53篇 |
1992年 | 67篇 |
1991年 | 48篇 |
1990年 | 35篇 |
1989年 | 29篇 |
1988年 | 28篇 |
1987年 | 16篇 |
1986年 | 14篇 |
1985年 | 22篇 |
1984年 | 12篇 |
1983年 | 11篇 |
1982年 | 10篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1979年 | 18篇 |
1978年 | 8篇 |
1976年 | 7篇 |
1975年 | 5篇 |
1972年 | 5篇 |
排序方式: 共有6491条查询结果,搜索用时 11 毫秒
991.
Ding WJ Qian QF Hou XL Feng WY Chen CY Chai ZF Zhang BR Wang K 《Biological trace element research》2002,88(2):193-199
The purpose of this study was to assess the chromium (Cr) distribution in chromium-rich brewer’s yeast cell. The chromium
concentrations in the cell wall and protoplast fractions of the chromium-rich yeast were determined by neutron activation
analysis (NAA). Moreover, the combined state of chromium and amino acid content in the Cr-rich brewer’s yeasts was analyzed
and measured. The experimental results indicate that the introduction of water-soluble chromium (III) salt as a component
of the culture medium for yeasts results in a substantial amount of chromium absorbed through the cell wall by the yeast,
among which 80.9% are accumulated in the protoplast. It implies that, under optimal conditions, yeasts are capable of accumulating
large amounts of chromium and incorporating chromium into organic compounds. 相似文献
992.
Ya-Nan Wang Lei Tang Yan Hou Ping Wang Hua Yang Chao-Ling Wei 《Functional & integrative genomics》2016,16(4):383-398
993.
Xiaokun Sun Linzhi Dai Hang Zhang Xuejun He Fandi Hou Wengao He Shijun Tang Dong Zhao 《Neurochemical research》2018,43(7):1383-1391
Neuritin is an extracellular glycophosphatidylinositol-linked protein that promotes neuronal survival, differentiation, function, and repair, but the exact mechanism of this neuroprotective effect remains unclear. Meanwhile, endoplasmic reticulum stress (ERS) induced apoptosis is attracting increased attention. In this work, we hypothesized that neuritin inhibited ERS to protect cortical neurons. To check this hypothesis, we exposed primary cultured cortical neurons to oxygen and glucose deprivation (OGD) for 45 min followed by reperfusion (R) to activate ERS. We then performed resuscitation for 6, 12, 24, and 48 h. ERS-related factors such as glucose-regulated protein 78 (GRP78), caspase-12 and CHOP were detected by Western blotting and quantitative real-time polymerase chain reaction assay. Apoptosis was assessed by Annexin V binding and propidium iodide staining. Ultrastructural changes of endoplasmic reticulum were observed under a transmission electron microscope. Results showed that GRP78 expression significantly increased at 12, 24, and 48 h and peaked at 24 h. Caspase-12 and CHOP expression significantly increased in a time-dependent manner at 12, 24, and 48 h. GRP78, caspase-12 and CHOP expression as well as apoptosis rate of primary cultured neurons and the ultrastructural changes of endoplasmic reticulum in the OGD/R?+?neuritin group significantly improved compared with the OGD/R group. In conclusion, the neuroprotection function of neuritin may be involved in ERS pathways. 相似文献
994.
Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization 总被引:17,自引:0,他引:17
Screening disease-related single nucleotide polymorphism (SNP) markers in the whole genome has great potential in complex disease genetics and pharmacogenetics researches. It has led to a requirement for high-throughput genotyping platforms that can maximize the efficient screening functional SNPs with respect to accuracy, speed and cost. In this study, we attempted to develop a microarray-based method for scoring a number of genomic DNA in parallel for one or more molecular markers on a glass slide. Two SNP markers localized to the methylenetetrahydrofolate reductase gene (MTHFR) were selected as the investigated targets. Amplified PCR products from nine genomic DNA specimens were spotted and immobilized onto a poly-l-lysine coated glass slide to fabricate a microarray, then interrogated by hybridization with dual-color probes to determine the SNP genotype of each sample. The results indicated that the microarray-based method could determine the genotype of 677 and 1298 MTHFR polymorphisms. Sequencing was performed to validate these results. Our experiments successfully demonstrate that PCR products subjected to dual-color hybridization on a microarray could be applied as a useful and a high-throughput tool to analyze molecular markers. 相似文献
995.
Background
To assess the association of albuminuria and retinopathy with metabolic syndrome (MetS) and the related metabolic components defined by various criteria in Chinese community-based subjects.Methods
A total of 3240 Chinese subjects were recruited from urban communities and classified into subgroups with isolated or concomitant state of the two microvascular diseases. MetS was defined according to the standard of International Diabetes Federation, the National Cholesterol Education Program''s Adult Treatment Panel III and Chinese Diabetes Society (CDS), separately. Albuminuria was defined as an elevated morning urine albumin-to-creatinine ratio. Retinopathy were identified with nonmydriatic retinal photographs according to the Diabetic Retinopathy Disease Severity Scale. Logistic regression was performed to analyze the contributive risk factors.Results
The subgroup of isolated retinopathy was the oldest (P<0.05), with higher blood pressure (P<0.001) and larger waist circumference (P<0.05). After adjusting for age, sex and other metabolic components, individuals with blood pressure over 130/85 mmHg were prone to have isolated albuminuria (OR: 1.51, P = 0.0001); while individuals with fasting plasma glucose over 5.6 mmol/L were in high risk of retinopathy concomitant with albuminria (OR: 3.04, P = 0.006). Larger waist circumference was a potential risk factors for isolated albuminuria and isolated retinopathy, though not significant after further adjustment of other metabolic components. The risk for albuminuria and retinopathy increased with the aggregation of three or more metabolic components. However, the MetS per se did not have synergic effect and only the MetS defined by CDS remained as a risk factor.Conclusions
Albuminuria and retinopathy were highly associated with accumulated metabolic abnormalities including sub-clinical elevated blood pressure and elevated fasting plasma glucose. 相似文献996.
microRNAs (miRNAs)是一类功能性非编码RNA,在多种生物过程中具有重要作用.然而,miRNA的表达模式、调控网络以及参与肝纤维化的miRNA仍有待阐明.为了探讨与肝纤维化相关的miRNA及其靶基因的功能,为临床肝纤维化治疗提供理论依据,本研究前期已采用胆管结扎法(BDL)建立大鼠胆汁淤积性肝纤维化模型.从大鼠肝脏中提取总RNA,应用基因芯片技术对胆汁淤积性肝纤维化肝组织中miRNA和mRNA表达谱进行综合分析;结合生物信息方法分析在胆汁淤积性肝纤维化中差异表达miRNA可能的靶基因;实时荧光定量PCR技术检测TGF-β1处理人肝星状细胞LX-2细胞中miR-29a-3p、miR-194-5p和miR-22-3p相对表达水平.结果 表明,与正常肝组织相比,纤维化肝组织中有48个差异表达miRNA (FC>2,P<0.05),其中36个上调,12个下调;筛选出18个预测靶基因参与与纤维化相关的生物过程;TGF-β1处理LX-2细胞中miR-29a-3p、miR-194-5p和miR-22-3p相对表达水平显著下调(P<0.05).本研究筛选的差异表达miRNAs通过调节靶基因的表达在肝纤维化中可能发挥重要作用,将为miRNA在肝纤维化中的作用提供新的见解. 相似文献
997.
Superoxide reductases (SORs) are superoxide (O2-)-detoxifying enzymes that catalyse the reduction of O2- into hydrogen peroxide. Three different classes of SOR have been reported on the basis of the presence or not of an additional N-terminal domain. They all share a similar active site, with an unusual non-heme Fe atom coordinated by four equatorial histidines and one axial cysteine residues. Crucial catalytic reaction intermediates of SOR are purported to be Fe(3+)-(hydro)peroxo species. Using resonance Raman spectroscopy, we compared the vibrational properties of the Fe3+ active site of two different classes of SOR, from Desulfoarculus baarsii and Treponema pallidum, along with their ferrocyanide and their peroxo complexes. In both species, rapid treatment with H2O2 results in the stabilization of a side-on high spin Fe(3+)-(eta(2)-OO) peroxo species. Comparison of these two peroxo species reveals significant differences in vibrational frequencies and bond strengths of the Fe-O2 (weaker) and O-O (stronger) bonds for the T. pallidum enzyme. Thus, the two peroxo adducts in these two SORs have different stabilities which are also seen to be correlated with differences in the Fe-S coordination strengths as gauged by the Fe-S vibrational frequencies. This was interpreted from structural variations in the two active sites, resulting in differences in the electron donating properties of the trans cysteine ligand. Our results suggest that the structural differences observed in the active site of different classes of SORs should be a determining factor for the rate of release of the iron-peroxo intermediate during enzymatic turnover. 相似文献
998.
Yunzhen Wu Shuyan Cao Jungang Hou Zhuwei Li Bo Zhang Panlong Zhai Yanting Zhang Licheng Sun 《Liver Transplantation》2020,10(29)
Converting CO2 to valuable carbonaceous fuels and chemicals via electrochemical CO2 reduction by using renewable energy sources is considered to be a scalable strategy with substantial environmental and economic benefits. One of the challenges in this field is to develop nanocatalysts with superior electrocatalytic activity and selectivity for targeted products. Nonmetal species modification of nanocatalysts is of great significance for the construction of distinctive active sites to overcome the kinetic limitations of CO2 reduction. These types of modification enable the efficient control of the selectivity and significantly decrease the reaction overpotential. Herein, a comprehensive review of the recent progress of nonmetal species modification of nanocatalysts for electrochemical CO2 reduction is presented. After discussing some fundamental parameters and the basic principles of CO2 reduction, including possible reaction pathways in light of theoretical modeling and experiments, the identification of active sites and elucidation of reaction mechanisms are emphasized for unraveling the role of nonmetal species modification, such as heteroatom incorporation, organic molecule decoration, electrolyte engineering, and single‐atom engineering. In the final section, future challenges and constructive perspectives are provided, facilitating the accelerated advancement of mechanism research and practical applications of green carbon cycling. 相似文献
999.
L. Xu S. S. He D. Y. Li C. Mei X. L. Hou L. S. Jiang F. H. Liu 《Molecular Biology》2016,50(2):270-277
In order to investigate the mechanism of apoptosis in rat intestinal epithelial cells (IEC-6) induced by hydrogen peroxide (H2O2), IEC-6 cells were subjected to 20 μmol/L H2O2 and cell proliferation activity was determined using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide. Cell morphology was observed by microscopy and cell apoptosis was detected by acridine orange and ethidium bromide staining and the portion of apoptotic cells was measured by flow cytometry. Genes and proteins related to cell apoptosis were detected by RT-PCR and Western blotting, and the mitochondrial membrane potential was evaluated by fluorescence probes. Results: Significant morphology damage was caused by exposure to H2O2, and results showed that ROS generation significantly increased (P < 0.01). The activity of superoxide dismutase decreased significantly (P < 0.05), malondialdehyde content increased (P < 0.05), and expression of both catalase and glutathione peroxidase decreased significantly (P < 0.05) in the H2O2 treatment group. Mitochondrion membrane potential was reduced, cytochrome released into the cytoplasm and caspase-9 and caspase-3 were significantly increased (P < 0.01) after treatment with H2O2. Moreover, the ratio of Bax/Bcl-2 and apoptosis were significantly increased (P < 0.01) in the H2O2 group. In conclusion, the present study indicated that the mitochondrial pathway plays a vital role in H2O2 induced IEC-6 cell apoptosis. 相似文献
1000.
Yanhong Cui Lu Hou Xiang Li Feiyi Huang Xiaoming Pang Yingyue Li 《Plant Cell, Tissue and Organ Culture》2017,129(1):175-180
The genetic manipulation of Capsicum has been unsuccessful, and a large bottleneck to transferring the desired genes is due to the difficulty in regenerating whole plants through tissue culture because of its highly recalcitrant and high genotype specificity. This study aimed to investigate and establish rapid shoot regeneration from the proximal ends of the leaves of Capsicum frutescens KT-OC and BOX-RUB varieties. A maximum of 8–10 shoot buds were obtained from the margins of the proximal portion of a cotyledonary leaf explant of C. frutescens variety KT-OC on medium I containing 44.44 µM 6-benzylaminopurine (BA), 5.71 µM indole-3-acetic acid (IAA), 10 µM silver nitrate (AgNO3) and 1.98 mg L?1 2-(N-morpholine) ethane sulphonic acid within 4 weeks of incubation, of which 60% of explants responded in terms of shoot buds. Petiole explants (40%) cultured on the same medium produced 2–4 shoots per explant from the distal portion. The cut portions of the cotyledonary leaf proximal portions responded well to shoot bud formation in the presence of 22.20 µM BA and 14.68 µM phenyl acetic acid (PAA), wherein 100% of explants responded in terms of shoot bud formation, with an average of 10?±?1.7 and 8?±?1.9 shoot buds per explant in KT-OC and BOX-RUB varieties, respectively. The differentiated shoots grew well and proliferated in the presence of 14.68 µM PAA?+?22.20 µM BA and 10 µM AgNO3. Shoot elongation was obtained in presence of 1.44 µM gibberellic acid (GA3) and 10 µM AgNO3. These shoots were rooted on plant growth regulator-free half-strength MS medium and upon hardening; field survival rate was 70%. This reproducible regeneration method for C. frutescens, especially the Indian high pungent variety, from proximal portion of cotyledonary leaf and petiole explants, can be used for biotechnological improvement. 相似文献