首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1570篇
  免费   116篇
  国内免费   112篇
  2024年   2篇
  2023年   19篇
  2022年   31篇
  2021年   72篇
  2020年   54篇
  2019年   55篇
  2018年   46篇
  2017年   45篇
  2016年   67篇
  2015年   94篇
  2014年   106篇
  2013年   118篇
  2012年   111篇
  2011年   139篇
  2010年   81篇
  2009年   72篇
  2008年   86篇
  2007年   74篇
  2006年   92篇
  2005年   58篇
  2004年   60篇
  2003年   35篇
  2002年   36篇
  2001年   22篇
  2000年   17篇
  1999年   29篇
  1998年   22篇
  1997年   24篇
  1996年   27篇
  1995年   20篇
  1994年   13篇
  1993年   9篇
  1992年   10篇
  1991年   9篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有1798条查询结果,搜索用时 31 毫秒
941.
942.
943.
944.
945.
946.
Ouyang A  Skibo EB 《Biochemistry》2000,39(19):5817-5830
Described herein is a study of the reductive alkylation chemistry of mitosene antitumor agents. We employed a 13C-enriched electrophilic center to probe the fate of the iminium ion resulting from reductive activation. The 13C-labeled center permitted the identification of complex products resulting from alkylation reactions. In the case of DNA reductive alkylation, the type and number of alkylation sites were readily assessed by 13C NMR. Although there has been much excellent work done in the area of mitosene chemistry and biochemistry, the present study provides a number of new findings: (1) The major fate of the iminium ion is head-to-tail polymerization, even in dilute solutions. (2) Dithionite reductive activation results in the formation of mitosene sulfite esters as well as the previously observed sulfonate adducts. (3) The mitosene iminium ion alkylates the adenosine 6-amino group as well as the guanosine 2-amino group. The identification of the latter adduct was greatly facilitated by the 13C-label at the electrophilic center. (4) The mitosene iminium ion alkylates DNA at both nitrogen and oxygen centers without any apparent base selectivity. The complexity of mitosene reductive alkylation of DNA will require continued adduct isolation studies.  相似文献   
947.
The study investigated the hypothesis that three consecutive days of prolonged cycle exercise would result in a sustained reduction in the Ca(2+)-cycling properties of the vastus lateralis in the absence of changes in the sarcoplasmic (endoplasmic) reticulum Ca(2+)-ATPase (SERCA) protein. Tissue samples were obtained at preexercise (Pre) and postexercise (Post) on day 1 (E1) and day 3 (E3) and during recovery day 1 (R1), day 2 (R2), and day 3 (R3) in 12 active but untrained volunteers (age 19.2 +/- 0.27 yr; mean +/- SE) and analyzed for changes (nmol.mg protein(-1).min(-1)) in maximal Ca(2+)-ATPase activity (V(max)), Ca(2+) uptake and Ca(2+) release (phase 1 and phase 2), and SERCA isoform expression (SERCA1a and SERCA2a). At E1, reductions (P < 0.05) from Pre to Post in V(max) (150 +/- 7 vs. 121 +/- 7), Ca(2+) uptake (7.79 +/- 0.28 vs. 5.71 +/- 0.33), and both phases of Ca(2+) release (phase 1, 20.3 +/- 1.3 vs. 15.2 +/- 1.1; phase 2, 7.70 +/- 0.60 vs. 4.99 +/- 0.48) were found. In contrast to V(max), which recovered at Pre E3 and then remained stable at Post E3 and throughout recovery, Ca(2+) uptake remained depressed (P < 0.05) at E3 Pre and Post and at R1 as did phase 2 of Ca(2+) release. Exercise resulted in an increase (P < 0.05) in SERCA1a (14% at R2) but not SERCA2a. It is concluded that rapidly adapting mechanisms protect V(max) following the onset of regular exercise but not Ca(2+) uptake and Ca(2+) release.  相似文献   
948.
Strain magnitude, strain rate, axon location, axon size, and the local tissue stress state have been proposed as the mechanisms governing primary cellular damage within the spinal cord parenchyma during slow compression injury. However, the mechanism of axon injury has yet to be fully elucidated. The objective of this study was to correlate cellular damage within the guinea pig spinal cord white matter, quantified by a horseradish peroxidase (HRP) exclusion test, with tissue-level stresses and strains using a combined experimental and computational approach. Force-deformation curves were acquired by transversely compressing strips of guinea pig spinal cord white matter at a quasi-static rate. Hyperelastic material parameters, derived from a Mooney-Rivlin constitutive law, were varied within a nonlinear, plane strain finite element model of the white matter strips until the computational force-deformation curve converged to the experimental results. In addition, white matter strips were subjected to nominal compression levels of 25%, 50%, 70%, and 90% to assess axonal damage by quantifying HRP uptake. HRP uptake density increased with tissue depth and with increased nominal compression. Using linear and nonlinear regression analyses, the strongest correlations with HRP uptake density were found for groups of tissue-level stresses and groups of log-transformed tissue-level strains.  相似文献   
949.
Xin J A  Ouyang Z Y  Zheng H  Wang X K  Miao H 《农业工程》2007,27(9):3820-3827
Owing to unsuitable green space construction, abundant allergenic pollen plants are centralized in urban areas, producing allergenic pollen. A mass of airborne allergenic pollen could cause pollinosis to badly influence people's robustness. To provide scientific basis for reasonable green space construction, the research advances of allergenic plants were reviewed. Firstly, species composition, phenological characteristics and influential factors (which include unsuitable green land construction, urban heat island effect, traffic pollution, etc.) were summarized. Secondly, the strategies controlling allergenic pollen plants were proposed. Thirdly, some problems on allergenic plants worthy of more research, including allergenic mechanism and methodology, were also put forward.  相似文献   
950.
Freshwater mussels provide important functions and services for aquatic ecosystems, but populations of many species have been extirpated. Information on biodiversity plays an important role in the conservation and management of freshwater mussels. The Xin River Basin is a biodiversity hotspot for freshwater mussels in China, with more than 43 species known, but populations of which are decreasing. Here, we quantify the diversity of freshwater mussels in the middle and lower reaches of the Xin River Basin and study the correlation of habitat characteristics and freshwater mussel diversity. Compared to the historical period, the number of species, density, and biomass of freshwater mussels decreased 33%, 83%, and 82% in the current period, respectively. Fifty two percent of recorded species were empty shells, and 14 native freshwater mussels were not found in the study area. Four species are currently listed as vulnerable species using IUCN criteria and their global status. The assemblage structure of freshwater mussels exhibits significant spatial differences, and there was a correlation with substrate and physicochemical parameters. The main tributary of the Xin River with higher freshwater mussel diversity should be established as one large protected area because the nestedness component was the main pattern of beta diversity. These results indicated freshwater mussel diversity was declining rapidly, which can help focus conservation effort for freshwater mussel biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号