首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1777篇
  免费   221篇
  国内免费   9篇
  2022年   12篇
  2021年   24篇
  2020年   14篇
  2019年   15篇
  2018年   20篇
  2017年   16篇
  2016年   37篇
  2015年   94篇
  2014年   87篇
  2013年   95篇
  2012年   132篇
  2011年   115篇
  2010年   94篇
  2009年   72篇
  2008年   91篇
  2007年   73篇
  2006年   84篇
  2005年   78篇
  2004年   65篇
  2003年   72篇
  2002年   59篇
  2001年   62篇
  2000年   58篇
  1999年   59篇
  1998年   26篇
  1997年   35篇
  1996年   20篇
  1995年   20篇
  1994年   27篇
  1993年   15篇
  1992年   37篇
  1991年   32篇
  1990年   32篇
  1989年   20篇
  1988年   21篇
  1987年   27篇
  1986年   10篇
  1985年   22篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   10篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有2007条查询结果,搜索用时 15 毫秒
191.
192.
The effects of caffeine on receptor-controlled Ca2+ mobilization and turnover of inositol phosphates in human neuroblastoma SK-N-SH cells were studied. Caffeine inhibited both the rise in cytosolic Ca2+ concentration ([Ca2+]i) evoked by muscarinic receptor agonists and the total production of inositol phosphates in a dose-dependent manner, but to different extents. At 10 mM, caffeine inhibited agonist-evoked generation of inositol phosphates almost completely, whereas the agonist-evoked [Ca2+]i rise remained observable after caffeine treatment, in the absence or presence of extracellular Ca2+. Raising the cytosolic cAMP concentration increased the carbachol-induced [Ca2+]i rise, and this effect was abolished in the presence of caffeine. Our data suggested that caffeine may exert two effects on receptor-controlled Ca2+ mobilization: 1) inhibition of inositol phosphate production, 2) augmentation of the size of the releasable Ca2+ pool by elevating cytosolic cAMP concentration.  相似文献   
193.
The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins.  相似文献   
194.
The Apolipoprotein-E (Apo-E) gene, a gene that produces proteins which help to regulate lipid levels in the bloodstream, is of interest in the study of cardiovascular diseases. An approach to making inferences about the genetic effects of the Apo-E gene has been developed by Glickman and Gagnon (2002). The framework describes the role of genetic and risk factors on the onset ages of multiple diseases, and accounts for the possibility that an individual was censored for reasons related to the diseases of interest. The framework also allows for missing genetic information, so that subjects censored prior to genetic sampling, and therefore missing such information, may still be included in the analysis. We apply an extension to this framework to the original cohort of the Framingham Heart Study for measuring the effects of different Apo-E genotypes on the onset age of various cardiovascular disease events. In particular, we compare the fit of univariate versus multivariate onset age components to the model, whether to incorporate health covariates measured at baseline or at a point later in the study, and whether to assume a heritability model for Apo-E genotype frequencies. The results of the best fitting model are presented.  相似文献   
195.
Green tea catechins, especially (–)-epigallocatechin gallate (EGCG), have been proposed as a chemopreventative for obesity, diabetes, cancer, and cardiovascular diseases. However, relatively little is known about the mechanism of the action of EGCG on fat cell function. This study was designed to investigate the pathways of EGCG's modulation of the mitogenesis of 3T3-L1 preadipocytes. Preadipocyte proliferation as indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU) was inhibited by EGCG in dose-, time-, and growth phase-dependent manners. Also, EGCG dose and time dependently decreased levels of phospho-ERK1/2, Cdk2, and cyclin D1 proteins, reduced Cdk2 activity, and increased levels of G0/G1 growth arrest, p21waf/cip, and p27kip1, but not p18ink, proteins and their associations to Cdk2. However, neither MEK1, ERK1/2, p38 MAPK, phospho-p38, JNK, nor phospho-JNK was changed. Increased phospho-ERK1/2 content and Cdk2 activity, respectively, via the transfection of MEK1 and Cdk2 cDNA into preadipocytes prevented EGCG from reducing cell numbers. These data demonstrate the ERK- and Cdk2-dependent antimitogenic effects of EGCG. Moreover, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in changing the mitogenic signals. The signal of EGCG in reducing growth of 3T3-L1 preadipocytes differed from that of 3T3 fibroblasts. Results of this study may relate to the mechanism by which EGCG modulates body weight. 3T3-L1 preadipocyte; mitogen-activated protein kinase; cyclin-dependent kinase  相似文献   
196.
Genetic modified baculovirus (GMBV) are among the most promising alternatives to chemical insecticides. One of the deterrents to the GMBV development is the lack of simple and cost-effective methods for monitoring their efficacy and ecology in fields. Here, we demonstrate the DsRed gene from coral can serve as a convenient GMBV tracer. Insect larvae, including Trichoplusia ni, Spodoptera exigua, and Spodoptera litura, infected the GMBV containing the DsRed gene can emit red fluorescence under sun light without any prosthetic apparatus.  相似文献   
197.
The fidelity of chromosomal duplication is monitored by cell cycle checkpoints operational during mitosis. One such cell cycle delay is invoked by microtubule-targeting agents such as nocodazole or paclitaxel (Taxol) and is mediated by mitotic checkpoint proteins that include BubR1. Relatively little is known about the regulation of expression and stability of BubR1 (or other checkpoint proteins) and how these factors dictate the durability of the cell cycle delay. We report here that treatment of HeLa cells with spindle-disrupting agents resulted in caspase activation and precipitated the cleavage of BubR1. This mechanism ultimately leads to reduced levels of full-length protein, which are accompanied by abrogation of the mitotic block; the checkpoint abrogation is substantially accelerated by inhibition of de novo protein synthesis. In contrast, inhibition of caspase activity blocked BubR1 degradation and prolonged mitosis. To confirm a direct link between caspase activity and BubR1 protein expression, we identified by site-directed mutagenesis the specific caspase cleavage sites cleaved after exposure to paclitaxel. Surprisingly, BubR1 has two sites of cleavage: primarily at Asp607/Asp610 and secondarily at Asp576/Asp579. BubR1 mutated at both locations (BubR1Delta579Delta610) was resistant to paclitaxel-induced degradation. Expression of BubR1Delta579Delta610 augmented the mitotic delay induced by spindle disruption in transfected cells as well as in clones engineered to inducibly express the mutant protein upon exposure to doxycycline and ultimately led to increased aneuploidy. Underscoring the importance of these caspase cleavage sites, both tetrapeptide motifs are identified in the amino acid sequences of human, mouse, chicken, and Xenopus BubR1. These results are potentially the first to link the control of the stability of a key mitotic checkpoint protein to caspase activation, a regulatory pathway that may be involved in killing defective cells and that has been evolutionarily conserved.  相似文献   
198.
The severe acute respiratory syndrome (SARS) coronavirus virus non-structural protein 15 is a Mn2+-dependent endoribonuclease with specificity for cleavage at uridylate residues. To better understand structural and functional characteristics of Nsp15, 22 mutant versions of Nsp15 were produced in Escherichia coli as His-tagged proteins and purified by metal-affinity and ion-exchange chromatography. Nineteen of the mutants were soluble and were analyzed for enzymatic activity. Six mutants, including four at the putative active site, were significantly reduced in endoribonuclease activity. Two of the inactive mutants had unusual secondary structures compared to the wild-type protein, as measured by circular dichroism spectroscopy. Gel-filtration analysis, velocity sedimentation ultracentrifugation, and native gradient pore electrophoresis all showed that the wild-type protein exists in an equilibrium between hexamers and monomers in solution, with hexamers dominating at micromolar protein concentration, while native gradient pore electrophoresis also revealed the presence of trimers. A mutant in the N terminus of Nsp15 was impaired in hexamer formation and had low endoribonuclease activity, suggesting that oligomerization is required for endoribonuclease activity. This idea was supported by titration experiments showing that enzyme activity was strongly concentration-dependent, indicating that oligomeric Nsp15 is the active form. Three-dimensional reconstruction of negatively stained single particles of Nsp15 viewed by transmission electron microscopic analysis suggested that the six subunits were arranged as a dimer of trimers with a number of cavities or channels that may constitute RNA binding sites.  相似文献   
199.
Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.  相似文献   
200.
Twelve healthy participants were studied in an Isolation Unit. For the first 7 (control) days, subjects lived on UK time. Then the clock was advanced by 8 h, mimicking an eastward time-zone transition, and for days 8 to 12, participants lived on this new local time. Two constant routines (participants were not allowed to sleep, were restricted in movement, and ate regular, identical snacks) were undertaken, during the control days (days 3 to 4) and at the end of the experiment (days 11 to 12). Rectal temperature and activity were measured throughout, with activity used to correct the measured temperatures for the direct (masking) effects of the sleep-wake cycle. Phase changes of the temperature rhythm between the constant routines were assessed by cross-correlation and cosinor analysis. During days 8 to 10, the measured temperatures and those that had been corrected (purified) for masking were assessed by the same two methods, and the shifts were extrapolated to predict the values expected during the second constant routine. Individuals differed widely in the phase shifts of the temperature rhythm, but the correlations between the changes measured by constant routines and those estimated by the purification methods were high (r=0.771 to 0.903), and the differences between them were not significantly different from zero (p>0.24). Phase shifts of the measured (masked) temperature rhythm were poorer predictors of the shift obtained from the constant routines (r3+/-4.5 h). Limitations of the methods due to the variability of results are discussed, but we conclude that the mean phase shifts obtained from purified, but not raw, temperature data show acceptable agreement with those found using our version of the constant routine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号