首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   22篇
  241篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   9篇
  2015年   14篇
  2014年   13篇
  2013年   13篇
  2012年   19篇
  2011年   16篇
  2010年   3篇
  2009年   14篇
  2008年   11篇
  2007年   9篇
  2006年   10篇
  2005年   11篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1978年   3篇
  1977年   4篇
  1973年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
161.
The role of brassinosteroids (BRs) in hyponastic growth induced by submergence was investigated in Arabidopsis thaliana. Under flooding conditions, exogenously applied BRs increased hyponastic growth of rosette leaves. This hyponastic growth was reduced in a BR insensitive mutant (bri1-5), while it was increased in a BR dominant mutant (bes1-D). Further, expression of hypoxia marker genes, HRE1 and HRE2, was elevated in submerged bes1-D. These results indicate that BRs exert a positive action on hyponastic growth of submerged Arabidopsis leaves. Expression of ethylene biosynthetic genes, such as ACS6, ACS8 and ACO1, which are up-regulated by submergence, was also activated by application of BRs and in bes1-D. The enhanced hyponastic growth in submerged bes1-D was significantly reduced by application of cobalt ion, suggesting that BRs control hyponastic growth via ethylene, which seems to be synthesized by ACO6 and ACO8 followed by ACO1 in submerged leaves. A double mutant, bes1-Dxaco1-1, showed hyponastic growth activity similar to that seen in aco1-1, demonstrating that the BR signaling for regulation of hyponastic growth seems to be an upstream event in ethylene-induced hyponastic growth under submergence in Arabidopsis.  相似文献   
162.
Heme is an essential prosthetic group or substrate for many proteins, including hemoglobin, and hemo enzymes such as nitric oxide synthase, soluble guanylyl cyclase, and heme oxygenase (HO). HO is responsible for the breakdown of heme into equimolar amounts of biliverdin, iron, and carbon monoxide, the latter of which is thought to play a role in the regulation of vascular tone. It is not clear whether the source of heme for cardiovascular functions is derived from uptake from the extracellular milieu or synthesis. In this study, we tested the hypothesis that blood vessels obtain their supply of heme for HO through de novo synthesis. Adult male Sprague-Dawley rat aorta was incubated at 37 degrees C in Krebs' solution with 1 micro M [14C]delta-aminolevulinic acid (ALA). [14C]ALA uptake was linear for about 30 min and reached a plateau at approximately 100 min. The radioactivity was incorporated into porphyrins and heme as determined by esterification of 14C-labelled metabolites and thin-layer chromatography. The first and rate-limiting step of heme biosynthesis is catalyzed by ALA synthase (ALA-S), the activity of which was determined in rat aorta using a radiometric assay, approximately 250 nmol x (g wet mass)(-1) x h(-1). Inducing HO-1 in rat aorta with S-nitroso-N-acetylpenicillamine (500 micro M) did not increase ALA-S activity as compared with basal activity levels of the enzyme. It appears that there is a sufficient amount of heme available under basal ALA-S activity conditions to meet the increased demand for heme resulting from HO-1 induction. These observations indicate that the complete enzymatic pathway for de novo heme biosynthesis resides in rat aorta and furthermore indicate that de novo heme synthesis is capable of supplying a substantial portion of the heme substrate for HO in the aorta.  相似文献   
163.
For the tumor model of Skipper and Zubrod, which has been analyzed previously for the theoretical FLM function and the effect of chemotherapy against tumors of known or assumed kinetic characteristics, the theoretical continuous labeling (CL) function is derived by considering an equivalent tumor (in terms of unlabeled cell populations) in which the density function of phase duration of cells inS-phasef 2(a 2)=δ(a 2−∞) and the loss functionL 2(t)=0. This mathematical concept of blocking is applied to the analysis of synchronization in tumor growth and blocking effects in cancer chemotherapy. These effects of chemical agents on the cell cycle progression are being incorporated into a previously written computer simulation program for cancer chemotherapy. Whereas, a program is written and used to simulate the CL functions for L1210 leukemia, and primary and metastatic Lewis lung carcinoma.  相似文献   
164.
Isofucosterol is a major 4-demethylsterol which has an ethylidene group at C-24 in Arabidopsis thaliana. To evaluate the presence of brassinosteroids (BRs) with the same carbon skeleton as that of isofucosterol, a large quantity of A. thaliana was extracted and purified. GC-MS/selected ion monitoring analysis verified that 6-deoxohomodolichosterone and homodolichosterone are present in Arabidopsis. An enzyme solution prepared from wild type Arabidopsis successfully mediated conversion of 6-deoxohomodolichosterone to homodolichosterone. However, a double mutant cyp85a1/cyp85a2 could not catalyze the conversion, implying that in A. thaliana the C-6 oxidation of 6-deoxohomodolichosterone to homodolichosterone seems to be catalyzed by CYP85A1 and/or CYP85A2. In yeast, both heterologously expressed CYP85A1 and CYP85A2 catalyzed the C-6 oxidation of 6- deoxohomodolichosterone to homodolichosterone, but the conversion rate in CYP85A2/V60/WAT21 was significantly higher than that in CYP85A1/V60/WAT21, indicating that C-6 oxidation of 6-deoxohomodolichosterone to homodolichosterone is mainly catalyzed by CYP85A2 in A. thaliana. Taken together, this study strongly suggests that a biosynthetic pathway for the production of 6-deoxohomodolichosterone and homodolichosterone is functional, and CYP85As have important roles in 24-ethylidene biosynthesis in A. thaliana.  相似文献   
165.
H Yu  N Soong    W F Anderson 《Journal of virology》1995,69(10):6557-6562
A quantitative analysis of the binding kinetics of intact Moloney murine leukemia retrovirus (MoMuLV) particles with NIH 3T3 cells was performed with an immunofluorescence flow cytometry assay. The virus-cell binding equilibrium dissociation constant (KD), expressed in terms of virus particle concentration, was measured to be 8.5 (+/- 6.4) x 10(-12) M at 4 degrees C and was three- to sixfold lower at temperatures above 15 degrees C. The KD of virus binding is about 1,000-fold lower than the KD of purified MoMuLV envelope. The association rate constant was determined to be 2.5 (+/- 0.9) x 10(9) M-1 min-1 at 4 degrees C and was 5- to 10-fold higher at temperatures above 15 degrees C. The apparent dissociation rate constant at 4 degrees C was 1.1 (+/- 0.4) x 10(-3) min-1 and was doubled for every 10 degrees C increase in temperature over the range tested (15 to 37 degrees C).  相似文献   
166.
Induction of mouse peritoneal macrophage cytotoxicity against SV3T3, a line of virally transformed mouse cells correlated with the distribution of cytoplasmic calmodulin in the macrophages. The organization of the cytoskeleton was examined by fluorescent microscopy and by transmission electron microscopy, using immunogold tagging after Triton-X-100 (TX-100) extraction of the macrophages. Macrophages that had been activated to a tumoricidal state in vivo by vaccinia virus or in vitro by lymphokine stimulation displayed cytoskeletal networks that were more extended and weblike than did resident macrophages. The organization of microfilaments and microtubules in the cytoskeleton was displayed by using either anti-actin or anti-tubulin. Immunogold labeling of tumoricidal macrophage cytoskeletons with anti-calmodulin revealed strong binding to the microfilament network and no binding to microtubules. Anti-calmodulin reacted weakly with the cytoskeletal network of resident macrophages, and this was not demonstrably greater than the reaction with normal sheep serum. However, resident macrophages displayed a high density of calmodulin (CAM) associated with unidentifiable structures in the perinuclear region when reacted with anti-calmodulin. These characteristic distributions of CAM in resident and activated macrophages was confirmed by immunofluorescence. The total and cytoskeletal-associated amounts of calmodulin per unit of protein were determined by radioimmune assay and 125I labeling followed by SDS-PAGE. No statistically significant differences were detected between resident and activated macrophages in either the total cell or cytoskeleton fractions. In summary, our results suggest that induction of tumoricidal activity of mouse peritoneal macrophages correlates with the translocation of calmodulin to the microfilament network of the cytoskeleton.  相似文献   
167.
Human monocytotropic ehrlichiosis (HME) is an emerging, life-threatening, infectious disease caused by Ehrlichia chaffeensis, an obligate intracellular bacterium that lacks cell wall LPS. We have previously developed an animal model of severe HME using a strain of Ehrlichia isolated from Ixodes ovatus ticks (IOE). To understand the basis of susceptibility to severe monocytotropic ehrlichiosis, we compared low and high doses of the highly virulent IOE strain and the less virulent Ehrlichia muris strain that are closely related to E. chaffeensis in C57BL/6 mice. Lethal infections caused by high or low doses of IOE were accompanied by extensive liver damage, extremely elevated levels of TNF-alpha in the serum, high frequency of Ehrlichia-specific, TNF-alpha-producing CD8(+) T cells in the spleen, decreased Ehrlicha-specific CD4(+) T cell proliferation, low IL-12 levels in the spleen, and a 40-fold decrease in the number of IFN-gamma-producing CD4(+) Th1 cells. All groups contained negligible numbers of IL-4-producing cells in the spleen. Transfer of Ehrlichia-specific polyclonal Abs and IFN-gamma-producing Ehrlichia-specific CD4(+) and CD8(+) type 1 cells protected naive mice against lethal IOE challenge. Interestingly, infection with high dose E. muris provided protection against rechallenge with a lethal dose of IOE. Cross-protection was associated with substantial expansion of IFN-gamma-producing CD4(+) and CD8(+) cells, but not TNF-alpha-producing CD8(+) T cells, a high titer of IgG2a, and a low serum level of TNF-alpha. In conclusion, uncontrolled TNF-alpha production by CD8(+) T cells together with a weak CD4(+) Th1 cell response are associated with immunopathology and failure to clear IOE in the fatal model of HME.  相似文献   
168.
169.
The structure activity relationship of nine compounds were studied and compared to lidocaine. The extent of local anesthetic activity was ascertained by the tail pinch method in mice, and by the isolated frog sciatic nerve method. The effective and lethal dose in 50% of the animals was also determined. Three of the nine compounds appeared to possess significant local anesthetic activity in the in vivo studies and thus were selected for further investigation in vitro. The in vivo studies also indicated that two of the three were more toxic than lidocaine. The in vitro results demonstrated that methyl substitution at positions 2,3 and 5 on the benzene ring produced a compound of slightly more anesthetic potency in an acid medium. At pH 7.8 all three compounds approached the potency of lidocaine. These data indicate that methyl substitution at other than the ortho position of the benzene ring generally results in compounds of lesser local anesthetic activity while tending to increase the toxicity.  相似文献   
170.

Background

Since 1998 the serious public health problem in South East Asia of counterfeit artesunate, containing no or subtherapeutic amounts of the active antimalarial ingredient, has led to deaths from untreated malaria, reduced confidence in this vital drug, large economic losses for the legitimate manufacturers, and concerns that artemisinin resistance might be engendered.

Methods and Findings

With evidence of a deteriorating situation, a group of police, criminal analysts, chemists, palynologists, and health workers collaborated to determine the source of these counterfeits under the auspices of the International Criminal Police Organization (INTERPOL) and the Western Pacific World Health Organization Regional Office. A total of 391 samples of genuine and counterfeit artesunate collected in Vietnam (75), Cambodia (48), Lao PDR (115), Myanmar (Burma) (137) and the Thai/Myanmar border (16), were available for analysis. Sixteen different fake hologram types were identified. High-performance liquid chromatography and/or mass spectrometry confirmed that all specimens thought to be counterfeit (195/391, 49.9%) on the basis of packaging contained no or small quantities of artesunate (up to 12 mg per tablet as opposed to ∼ 50 mg per genuine tablet). Chemical analysis demonstrated a wide diversity of wrong active ingredients, including banned pharmaceuticals, such as metamizole, and safrole, a carcinogen, and raw material for manufacture of methylenedioxymethamphetamine (‘ecstasy''). Evidence from chemical, mineralogical, biological, and packaging analysis suggested that at least some of the counterfeits were manufactured in southeast People''s Republic of China. This evidence prompted the Chinese Government to act quickly against the criminal traders with arrests and seizures.

Conclusions

An international multi-disciplinary group obtained evidence that some of the counterfeit artesunate was manufactured in China, and this prompted a criminal investigation. International cross-disciplinary collaborations may be appropriate in the investigation of other serious counterfeit medicine public health problems elsewhere, but strengthening of international collaborations and forensic and drug regulatory authority capacity will be required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号