首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3717篇
  免费   300篇
  国内免费   187篇
  2024年   5篇
  2023年   18篇
  2022年   68篇
  2021年   106篇
  2020年   120篇
  2019年   126篇
  2018年   139篇
  2017年   93篇
  2016年   180篇
  2015年   259篇
  2014年   262篇
  2013年   297篇
  2012年   371篇
  2011年   340篇
  2010年   205篇
  2009年   193篇
  2008年   255篇
  2007年   211篇
  2006年   199篇
  2005年   144篇
  2004年   131篇
  2003年   93篇
  2002年   76篇
  2001年   35篇
  2000年   32篇
  1999年   27篇
  1998年   9篇
  1997年   16篇
  1996年   20篇
  1995年   14篇
  1994年   15篇
  1993年   10篇
  1992年   11篇
  1991年   13篇
  1990年   10篇
  1989年   14篇
  1988年   9篇
  1987年   8篇
  1984年   6篇
  1980年   4篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1973年   4篇
  1971年   3篇
  1970年   3篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1965年   4篇
排序方式: 共有4204条查询结果,搜索用时 62 毫秒
71.
A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.  相似文献   
72.
73.
Li  Yan-mei  Wang  Meng  Wang  Tian-yun  Wei  Yong-ge  Guo  Xiao  Mi  Chun-liu  Zhao  Chun-peng  Cao  Xiang-xiang  Dou  Yuan-yuan 《Molecular biology reports》2020,47(1):469-475
Molecular Biology Reports - Multicistronic vectors can increase transgene expression and decrease the imbalance of gene expression in the Chinese hamster ovary (CHO) cell expression system. Small,...  相似文献   
74.
Chen  Mi  Yang  Yang  Zhang  Wenqi  Li  Xinning  Wu  Jinli  Zou  Xiaohua  Zeng  Xianggang 《Neurochemical research》2020,45(7):1566-1575
Neurochemical Research - Neuropathic pain is an unneglectable pain condition with limited treatment options owing to its enigmatic underlying mechanisms. Long noncoding RNA small nucleolar RNA host...  相似文献   
75.
Triple-negative breast cancer (TNBC) is associated with a high mortality rate, which is related to the insufficient number of appropriate biomarkers and targets. Therefore, there is an urgent need to discover appropriate biomarkers and targets for TNBC. SARNP (Hcc-1 and CIP29) is highly expressed in several cancers. It binds to UAP56, an RNA helicase component of the TREX complex in messenger RNA (mRNA) splicing and export. However, the role of SARNP in mRNA splicing and export and in the progression of breast cancer, especially of TNBC, remains unknown. Therefore, we examined the role of SARNP in mRNA splicing and export and progression of TNBC. We confirmed that SARNP binds to UAP56 and Aly and that SARNP overexpression enhances mRNA splicing, whereas its knockdown suppressed mRNA export. The SARNP overexpression induced the proliferation of MCF7 cells, whereas its knockdown induced E-cadherin expression and downregulated vimentin and N-cadherin expressions in SK-BR-3 and MDA-MB-231 cells. SARNP downregulates E-cadherin expression by interaction with pinin. Mice injected with MDA-MB-231shSARNP cells exhibited a significant reduction in tumor growth and lung metastasis compared with those injected with MDA-MB-231shCon cells in vivo. These findings suggested that SARNP is involved in mRNA splicing and export. SARNP maintains mesenchymal phenotype by escaping from inhibitory interaction with pinin leading to the downregulation of E-cadherin expression.  相似文献   
76.
In the initial step of sugar metabolism, sugar-specific transporters play a decisive role in the passage of sugars through plasma membranes into cytoplasm. The SecY complex (SecYEG) in bacteria forms a membrane channel responsible for protein translocation. The present work shows that permeabilized SecY channels can be used as nonspecific sugar transporters in Escherichia coli. SecY with the plug domain deleted allowed the passage of glucose, fructose, mannose, xylose, and arabinose, and, with additional pore-ring mutations, facilitated lactose transport, indicating that sugar passage via permeabilized SecY was independent of sugar stereospecificity. The engineered E. coli showed rapid growth on a wide spectrum of monosaccharides and benefited from the elimination of transport saturation, improvement in sugar tolerance, reduction in competitive inhibition, and prevention of carbon catabolite repression, which are usually encountered with native sugar uptake systems. The SecY channel is widespread in prokaryotes, so other bacteria may also be engineered to utilize this system for sugar uptake. The SecY channel thus provides a unique sugar passageway for future development of robust cell factories for biotechnological applications.  相似文献   
77.
78.

Background

Biomedical data available to researchers and clinicians have increased dramatically over the past years because of the exponential growth of knowledge in medical biology. It is difficult for curators to go through all of the unstructured documents so as to curate the information to the database. Associating genes with diseases is important because it is a fundamental challenge in human health with applications to understanding disease properties and developing new techniques for prevention, diagnosis and therapy.

Methods

Our study uses the automatic rule-learning approach to gene–disease relationship extraction. We first prepare the experimental corpus from MEDLINE and OMIM. A parser is applied to produce some grammatical information. We then learn all possible rules that discriminate relevant from irrelevant sentences. After that, we compute the scores of the learned rules in order to select rules of interest. As a result, a set of rules is generated.

Results

We produce the learned rules automatically from the 1000 positive and 1000 negative sentences. The test set includes 400 sentences composed of 200 positives and 200 negatives. Precision, recall and F-score served as our evaluation metrics. The results reveal that the maximal precision rate is 77.8% and the maximal recall rate is 63.5%. The maximal F-score is 66.9% where the precision rate is 70.6% and the recall rate is 63.5%.

Conclusions

We employ the rule-learning approach to extract gene–disease relationships. Our main contributions are to build rules automatically and to support a more complete set of rules than a manually generated one. The experiments show exhilarating results and some improving efforts will be made in the future.  相似文献   
79.
Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.  相似文献   
80.
Human cytosolic aspartyl‐tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi‐tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C‐terminal end of the N‐helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N‐helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post‐translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions.Proteins 2013; 81:1840–1846. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号