首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10261篇
  免费   1186篇
  国内免费   1082篇
  2024年   19篇
  2023年   115篇
  2022年   327篇
  2021年   514篇
  2020年   458篇
  2019年   494篇
  2018年   518篇
  2017年   393篇
  2016年   484篇
  2015年   675篇
  2014年   773篇
  2013年   772篇
  2012年   897篇
  2011年   804篇
  2010年   554篇
  2009年   454篇
  2008年   546篇
  2007年   474篇
  2006年   436篇
  2005年   340篇
  2004年   353篇
  2003年   362篇
  2002年   351篇
  2001年   241篇
  2000年   158篇
  1999年   180篇
  1998年   105篇
  1997年   94篇
  1996年   89篇
  1995年   92篇
  1994年   68篇
  1993年   55篇
  1992年   54篇
  1991年   46篇
  1990年   40篇
  1989年   42篇
  1988年   26篇
  1987年   20篇
  1986年   18篇
  1985年   8篇
  1984年   12篇
  1983年   14篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1974年   2篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
971.
亚麻作为重要的经济作物,其遗传转化研究对亚麻新品种的选育工作具有重要意义.分析亚麻遗传转化方法、提高转化效率及转化组织筛选等方面,重点从抗除草剂基因、抗病基因、抗重金属逆性基因、改善亚麻纤维质量基因,以及改善亚麻油质量基因方面综述亚麻遗传转化外源基因的研究和应用进展,并讨论亚麻遗传转化过程中存在的问题和解决策略.  相似文献   
972.
瘦肉率对生猪产业来说是一个极其重要的经济指标,而这一指标完全取决于骨骼肌的生长发育。因此,猪骨骼肌生长发育机理的研究是十分必要的。然而,在早期由于各种因素的限制,猪骨骼肌单个基因的研究一直进展缓慢;相反,以小鼠为模型,其骨骼肌单基因的功能研究却取得了较大进展。在这一时期,影响肌决定和肌分化的基因,如MRFs家族和MEF2家族相继被发现,这些基因在猪的肌肉发育中也发挥着同样的作用。然而,这些结果并不能很好地揭示骨骼肌发育过程中复杂的基因间互作关系。随着近年来芯片和测序技术的不断发展,更多人试图从整个转录谱的水平来阐述猪肌肉发育的分子机理,并且也取得了较大的进展。为了对猪骨骼肌生长发育有一个更为清晰的认识,该文将以目前猪骨骼肌生长发育研究结果为基础,同时结合模式动物小鼠骨骼肌单基因的研究成果,对猪的骨骼肌生长发育分子调控机理进行详细的阐述。  相似文献   
973.
Wen Y  Wu X  Teng Y  Qian C  Zhan Z  Zhao Y  Li O 《Environmental microbiology》2011,13(10):2726-2737
Bacteria belonging to the genus Paenibacillus are recognized as rich sources of bioactive natural products. To date, there are few characterized siderophores from this genus. Here, through genome analysis, we identified a non-ribosomal peptide biosynthetic gene cluster (pae) responsible for siderophore assembly in Paenibacillus elgii B69. The 12.8 kb gene cluster comprises six open reading frames encoding proteins similar to the components of the bacillibactin biosynthetic machinery and bacillibactin esterase. To examine the product of the pae gene cluster, we cultured P. elgii B69 in iron-deficient medium for siderophore expression. A novel siderophore structurally similar to bacillibactin, designated paenibactin, was purified and characterized. Its structure was determined as a cyclic trimeric lactone of 2,3-dihydroxybenzoyl-alanine-threonine. The involvement of the pae gene cluster in paenibactin biosynthesis was confirmed by the biochemical assay of adenylation domain specificity. Furthermore, we demonstrated that the pae gene cluster evolves from an ancestral bacillibactin biosynthetic gene cluster via sequence and phylogenetic analyses. The structural difference between paenibactin and bacillibactin may stem from a mutation-induced change in the adenylation domain specificity. Based on these findings and published models for bacillibactin, we proposed models for paenibactin biosynthesis, ferric-paenibactin uptake and paenibactin-bounded iron release.  相似文献   
974.
A small open reading frame, termed 'pipo', is embedded in the P3 cistron of potyviruses. Currently, knowledge on pipo and its role(s) in the life cycle of potyviruses is limited. The P3 and helper-component proteinase (HC-Pro) cistrons of Soybean mosaic virus (SMV) harbour determinants affecting virulence on functionally immune Rsv1-genotype soybeans. Interestingly, a key virulence determinant of SMV on Rsv1-genotype soybeans (i.e. soybeans containing the Rsv1 resistance gene) that resides at polyprotein codon 947 overlaps both P3 and a pipo-encoded codon. This raises the question of whether PIPO or P3 is the virulence factor. To answer this question, the corresponding pipo of an avirulent and two virulent strains of SMV were studied by comparative genomics, followed by syntheses and analyses of site-directed mutants. Our data demonstrate that the virulence of SMV on Rsv1-genotype soybeans is affected by P3 and not the overlapping pipo-encoded protein.  相似文献   
975.
Simultaneous expression of multiple proteins in plants finds ample applications. Here, we examined the biotechnological application of native kex2p-like protease activity in plants for coordinate expression of multiple secretory proteins from a single transgene encoding a cleavable polyprotein precursor. We expressed a secretory red fluorescent protein (DsRed) or human cytokine (GMCSF), fused to a downstream green fluorescent protein (GFP) by a linker containing putative recognition sites of the kex2p-like protease in tobacco cells and referred to them as RKG and GKG cells, respectively. Our analyses showed that GFP is cleaved off the fusion proteins and secreted into the media by both RKG and GKG cells. The cleaved GFP product displayed the expected fluorescence characteristics. Using GFP immunoprecipitation and fluorescence analysis, the cleaved DsRed product in the RKG cells was found to be functional as well. However, DsRed was not detected in the RKG culture medium, possibly due to its tetramer formation. Cleaved and biologically active GMCSF could also be detected in GKG cell extracts, but secreted GMCSF was found to be only at a low level, likely because of instability of GMCSF protein in the medium. Processing of polyprotein precursors was observed to be similarly effective in tobacco leaf, stem and root tissues. Importantly, we also demonstrated that, via agroinfiltration, polyprotein precursors can be efficiently processed in plant species other than tobacco. Collectively, our results demonstrate the utility of native kex2p-like protease activity for the expression of multiple secretory proteins in plant cells using cleavable polyprotein precursors containing kex2p linker(s).  相似文献   
976.
Threonine (Thr) is one of a few limiting essential amino acids (EAAs) in the animal feed industry, and its level in feed rations can impact production of important meat sources, such as swine and poultry. Threonine as well as EAAs lysine (Lys) and methionine (Met) are all synthesized via the aspartate family pathway. Here, we report a successful strategy to produce high free threonine soybean seed via identification of a feedback‐resistant aspartate kinase (AK) enzyme that can be over‐expressed in developing soybean seed. Towards this goal, we have purified and biochemically characterized AK from the enteric bacterium Xenorhabdus bovienii (Xb). Site‐directed mutagenesis of XbAK identified two key regulatory residues Glu‐257 and Thr‐359 involved in lysine inhibition. Three feedback‐resistant alleles, XbAK_T359I, XbAK_E257K and XbAK_E257K/T359I, have been generated. This study is the first to kinetically characterize the XbAK enzyme and provide biochemical and transgenic evidence that Glu‐257 near the catalytic site is a critical residue for the allosteric regulation of AK. Furthermore, seed‐specific expression of the feedback‐resistant XbAK_T359I or XbAK_E257K allele results in increases of free Thr levels of up to 100‐fold in R1 soybean seed when compared to wild‐type. Expression of feedback‐sensitive wild‐type AK did not substantially impact seed Thr content. In addition to high Thr, transgenic seed also showed substantial increases in other major free amino acid (FAA) levels, resulting in an up to 3.5‐fold increase in the total FAA content. The transgenic seed was normal in appearance and germinated well under greenhouse conditions.  相似文献   
977.

Background  

MTML-msBayes uses hierarchical approximate Bayesian computation (HABC) under a coalescent model to infer temporal patterns of divergence and gene flow across codistributed taxon-pairs. Under a model of multiple codistributed taxa that diverge into taxon-pairs with subsequent gene flow or isolation, one can estimate hyper-parameters that quantify the mean and variability in divergence times or test models of migration and isolation. The software uses multi-locus DNA sequence data collected from multiple taxon-pairs and allows variation across taxa in demographic parameters as well as heterogeneity in DNA mutation rates across loci. The method also allows a flexible sampling scheme: different numbers of loci of varying length can be sampled from different taxon-pairs.  相似文献   
978.

Background  

The rapid accumulation of data on non-synonymous single nucleotide polymorphisms (nsSNPs, also called SAPs) should allow us to further our understanding of the underlying disease-associated mechanisms. Here, we use complex networks to study the role of an amino acid in both local and global structures and determine the extent to which disease-associated and polymorphic SAPs differ in terms of their interactions to other residues.  相似文献   
979.
Bacterial biofilms are known to withstand the effects of toxic metals better than planktonic cultures of the same species. This phenomenon has been attributed to many features of the sessile lifestyle not present in free-swimming populations, but the contribution of intracellular metabolism has not been previously examined. Here, we use a combined GC-MS and (1)H NMR metabolomic approach to quantify whole-cell metabolism in biofilm and planktonic cultures of the multimetal resistant bacterium Pseudomonas fluorescens exposed to copper ions. Metabolic changes in response to metal exposure were found to be significantly different in biofilms compared to planktonic cultures. Planktonic metabolism indicated an oxidative stress response that was characterized by changes to the TCA cycle, glycolysis, pyruvate and nicotinate and niacotinamide metabolism. Similar metabolic changes were not observed in biofilms, which were instead dominated by shifts in exopolysaccharide related metabolism suggesting that metal stress in biofilms induces a protective response rather than the reactive changes observed for the planktonic cells. From these results, we conclude that differential metabolic shifts play a role in biofilm-specific multimetal resistance and tolerance. An altered metabolic response to metal toxicity represents a novel addition to a growing list of biofilm-specific mechanisms to resist environmental stress.  相似文献   
980.
A novel ternary complex, TbL5L′(ClO4)3·3H2O, two binary complexes, TbL7(ClO4)3·3H2O and TbL′3.5(ClO4)3·4H2O has been synthesized (using diphenyl sulphoxide as the first ligand L, bipyridine as the second ligand L′). Their composition was analysed by element analysis, coordination titration, IR spectra and 1H‐NMR, and the fluorescence emission mechanism, fluorescence intensities and phosphorescence spectra were also investigated by comparison. It was shown that the ternary rare‐earth complex showed stronger fluorescence intensities than the binary rare‐earth complexes in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 8.23 times, 3.58 times as strong as that of the binary systems TbL7(ClO4)3·3H2O and TbL′3.5 (ClO4)3·4H2O, respectively. By fluorescence analysis it was found that both diphenyl sulphoxide and bipyridine could sensitize the fluorescence intensities of rare‐earth ions. In particular, in the ternary rare‐earth complex, introduction of bipyridine was of benefit to the fluorescence properties of Tb(III). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号