首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31885篇
  免费   2647篇
  国内免费   2042篇
  2024年   54篇
  2023年   362篇
  2022年   952篇
  2021年   1481篇
  2020年   1098篇
  2019年   1354篇
  2018年   1370篇
  2017年   1047篇
  2016年   1403篇
  2015年   1979篇
  2014年   2233篇
  2013年   2476篇
  2012年   2799篇
  2011年   2592篇
  2010年   1542篇
  2009年   1339篇
  2008年   1542篇
  2007年   1393篇
  2006年   1269篇
  2005年   1061篇
  2004年   976篇
  2003年   879篇
  2002年   823篇
  2001年   549篇
  2000年   478篇
  1999年   460篇
  1998年   278篇
  1997年   253篇
  1996年   263篇
  1995年   250篇
  1994年   199篇
  1993年   156篇
  1992年   205篇
  1991年   196篇
  1990年   164篇
  1989年   138篇
  1988年   124篇
  1987年   121篇
  1986年   88篇
  1985年   97篇
  1984年   62篇
  1983年   67篇
  1982年   40篇
  1981年   37篇
  1980年   30篇
  1979年   42篇
  1978年   31篇
  1977年   24篇
  1975年   31篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
We have investigated whether simultaneous modification of cofactor metabolism and glycerol in a strain of Saccharomyces cerevisiae can eliminate glycerol synthesis during ethanol production. Two strains, S812 (gpd1Δ gpd2Δ PGK1p-GLT1) and LE17 (gpd1Δ gpd2Δ PGK1p-GLT1 PGKp-STL1) were generated that showed a 8 and 8.2 % increase in the ethanol yield, respectively, compared to the wild type KAM-2 strain. The ethanol titer was improved from 90.4 g/l for KAM-2 to 97.6 g/l for S812 and 97.8 g/l for LE17, respectively. These results provide a new insight into rationalization of metabolic engineering strategies for improvement of ethanol yield through elimination of glycerol production.  相似文献   
942.
Ostericum atropurpureum G. Y. Li, G. H. Xia & W. Y. Xie (Apiaceae, Apioideae) from Zhejiang, China, is described and illustrated. It is closely related to O. huadongense Z. H. Pan & X. H. Li and O. sieboldii (Miquel) Nakai, but differs in having leaves with 1.5–9.0 cm long petiole, linear bracteoles 6–12 mm long, 5–9 rays, 7–14‐flowered umbellules, dark purple petals, broadly winged dorsal and lateral fruit ribs, 1.0–1.5 mm broad, 3–6 vittae in each furrow and 4–8 on the commissure.  相似文献   
943.
944.
Tobacco-specific nitrosamines (TSNAs) are carcinogenic chemicals found in tobacco plants. The increasing health consciousness of individuals had led to an increased interest in research on reducing TSNAs content. The aim of this study was to use a pot experiment in which exogenous substances were applied to burley tobacco to dissect the mechanism of TSNAs production. The results indicated that spraying the exogenous substances IAA, NAA, SA and combination thereof on burley tobacco after topping decreased TSNAs content by 2.69–29.4 % in upper leaves and 0.23–39.3 % in middle leaves without affecting total sugar, total nitrogen, potassium and chlorine contents. The application of exogenous substances could down-regulate expression of the NR gene and the activity of the NR enzyme, resulting in less accumulation of the TSNAs precursor nitrite. The exogenous substances significantly reduced nicotine accumulation, which was consistent with low enzyme activities and the down-regulated expressions of genes involved in nicotine biosynthesis, especially significant in the case of quinolinate phosphoribosyltransferase. These results suggested that the application of exogenous substances on burley tobacco after topping could reduce TSNAs content which may be attributed to the regulation of exogenous substances on nitrite and nicotine. This also implies one potential improvement to agronomic practices aimed at controlling the accumulation of TSNAs in burley tobacco.  相似文献   
945.
Loss of DBC2 (deleted in breast cancer 2) gene expression is frequent in breast cancer tissues. This can be explained by homozygous deletions or other mutations in a minority of cases but alternative mechanisms need to be investigated. Here, DBC2 expression was significantly suppressed compared with normal breast tissues in breast cancer tissues when analyzed by RT-PCR. Furthermore, DNA methylation on DBC2 was more prevalent in breast tumors than in normal tissues. DBC2 mRNA levels correlated with the degree of DBC2 methylation in breast cancer tissues and in a breast cancer cell line (T47D). Clinico-pathological correlation analysis showed that DBC2 promoter methylation was associated with tumor-node-metastasis stages II and III/IV, lymph node metastasis, p53 mutation, and HER2-positive status. Thus loss of DBC2 expression is caused by abnormal methylation of DBC2 and might have a role in breast cancer development.  相似文献   
946.
Magnetotactic bacteria synthesize intracellular magnetic particles, magnetosomes, which arrange in chain(s) and confer on cell a magnetic dipolar moment. To explore the function of geomagnetic field to magnetotactic bacteria, the effects of hypomagnetic field on magnetosome formation in Magnetospirillum magneticum AMB-1 were studied. Cells were cultivated in a specially designed device where geomagnetic field was reduced by about 100-fold to less than 500nT. AMB-1 cultures were incubated in hypomagnetic field or geomagnetic field. Results showed that hypomagnetic field had no significant effects on the average number of magnetic particles per bacterium and bacterial iron depletion. However, the growth (OD) of cell at stationary-phase was lower and cellular magnetism (R mag) at exponential growth phase was higher than that of bacteria cultivated in geomagnetic field. Statistic results on transmission electron microscopy (TEM) micrographs showed that the average size of magnetic particles in AMB-1 cells in hypomagnetic field group was larger than that of in geomagnetic field group and more ratio of larger-size magnetic particles (>50 nm) was observed when cultivated 16 h under hypomagnetic field. Furthermore, the influences of hypomagnetic field on gene expression were studied in AMB-1 cells. Quantitative RT-PCR results showed that hypomagnetic field up-regulated mms13, down-regulated mms6 and had no effect on magA. Together, the results showed that hypomagnetic field could affect the growth of AMB-1 at the stationary-phase, the crystallization process of magnetosomes, and mms13, mms6 expressions. In addition, our results suggested that the geomagnetic field plays an important role in the biomineralization of magnetosomes.  相似文献   
947.
Nickel is an important kind of metal and a necessary trace element in people’s production and livelihood; it is also a well-confirmed human carcinogen. In the past few years, researchers did a large number of studies about the molecular mechanisms of nickel carcinogenesis, and they focused on activation of proto-oncogenes and inactivation of anti-oncogenes caused by gene point mutation, gene deletion, gene amplification, DNA methylation, chromosome condensation, and so on that were induced by nickel. However, the researches on tumorigenic molecular mechanisms regulated by microRNAs (miRNAs) are rare. In this study, we established nickel-induced tumor by injecting Ni3S2 compounds to Wistar Rattus. By establishing a cDNA library of miRNA from rat muscle tumor tissue induced by Ni3S2, we found that the expression of miR-222 was significantly upregulated in tumor tissue compared with the normal tissue. As we expected, the expression levels of target genes of miR-222, CDKN1B and CDKN1C, were downregulated in the nickel-induced tumor. The same alteration of miR-222 and its target genes was also found in malignant 16HBE cells induced with Ni3S2 compounds. We conclude that miR-222 may promote cell proliferation infinitely during nickel-induced tumorigenesis in part by regulating the expression of its target genes CDKN1B and CDKN1C. Our study elucidated a novel molecular mechanism of nickel-induced tumorigenesis.  相似文献   
948.
Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg?1. After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.  相似文献   
949.
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.  相似文献   
950.
A 3D porous lamellar selenium-containing nano-hydroxyapatite (SeHAN)/chitosan (CS) biocomposite was synthesized. The selenium-containing hydroxyapatite (HA) grains of 150~200 nm in length and 20~30 nm in width were observed by dynamic light scattering and transmission electron microscopy. A combination of X-ray diffraction, Fourier-transform infrared spectroscopy, and SEM indicated that HA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and HA. Then, a standard critical size calvarial bone defect was created in Wistar rats. In group 1, no implant was made in the defect. In groups 2 and 3, HA nanoparticles (HAN)/CS biocomposite and SeHAN/CS biocomposite were implanted into the defect, respectively. After 4 weeks, the histological assessment clearly exhibited no significant changes, only found some living cells anchored in the periphery of the implants. After 8 and 12 weeks, most newly formed osteoid tissue was found in the SeHAN/CS implant group. Additionally, the newly formed osteoid tissue, both at the edge and in the center of implants, was bioactive and neovascularized. Microfocus computerized tomography measurements also confirmed the much better quality of the newly formed bone tissue in SeHAN/CS implant group than that in HAN/CS implant group (p?<?0.01). Collectively, the SeHAN/CS biocomposite, as a bioactive bone grafting substitute, significantly enhanced the repair of bone defect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号