首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10236篇
  免费   1183篇
  国内免费   1078篇
  2024年   18篇
  2023年   115篇
  2022年   297篇
  2021年   514篇
  2020年   458篇
  2019年   493篇
  2018年   517篇
  2017年   392篇
  2016年   484篇
  2015年   675篇
  2014年   773篇
  2013年   771篇
  2012年   897篇
  2011年   804篇
  2010年   554篇
  2009年   454篇
  2008年   546篇
  2007年   474篇
  2006年   436篇
  2005年   340篇
  2004年   353篇
  2003年   365篇
  2002年   351篇
  2001年   241篇
  2000年   158篇
  1999年   180篇
  1998年   105篇
  1997年   94篇
  1996年   89篇
  1995年   92篇
  1994年   68篇
  1993年   55篇
  1992年   54篇
  1991年   46篇
  1990年   40篇
  1989年   42篇
  1988年   26篇
  1987年   20篇
  1986年   18篇
  1985年   8篇
  1984年   12篇
  1983年   14篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1974年   2篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
251.
Abstract

This paper describes a systematic investigation on the hemodynamic environment in a patient-specific AAA with tortuous common iliac artery(CIA) and external iliac artery (EIA). 3D reconstructions from CT scans and subsequent computational simulation are carried out. It is found out that the Newtonian and non-Newtonian models have very similar flow field and WSS distribution. More importantly, it is revealed that the torturous CIA maintained its helical flow. It is concluded that the assumption of Newtonian blood is adequate in capturing the intra-aneurysmal hemodynamics. Moreover, it is speculated that the physiological spiral flow protects the twisted CIA from the thrombosis formation.  相似文献   
252.
253.
The present study evaluated the efficacy of intracoronary administration of verapamil to attenuate the no-reflow phenomenon following the primary percutaneous coronary intervention (PCI) in patients with the ST-segment elevation acute myocardial infarction (STEMI). A total of 201 patients with STEMI who underwent primary PCI within 12 h from the beginning of the heart attack were included. The no-reflow phenomenon was defined as substantial coronary anterograde flow of TIMI ≤2. Verapamil (100–200 μg) was injected into coronary artery immediately after no-reflow; the coronary arteriography was repeated later. Hundred and ninety-eight patients with STEMI successfully underwent primary PCI, and 246 stents were implanted with the average of 1.2 stents per patient. No-reflow occurred in 25 out of 198 patients (12.6 %). Twenty-one (84 %) patients developed the flow of TIMI ≥3 after intracoronary administration of verapamil, as revealed by repeated coronary angiography. Two patients developed transient hypotension which normalized without treatment within 3–5 min. Three patients showed sinus bradycardia, in one patient there was transient II sinoatrial block, and one patient developed type 1 atrioventricular block. All adverse effects were alleviated after intravenous injection of atropine (0.5–1 mg). In conclusion, the no-reflow phenomenon following primary PCI in patients with STEMI is significantly improved by intracoronary administration of verapamil which is useful to reduce cardiovascular events during operation.  相似文献   
254.
Microscopic methods were used to investigate the morphological characterization of two novel oligotrich ciliates, Spirostrombidium paraurceolare sp. nov. and Spirostrombidium faurefremieti sp. nov., isolated from a mangrove wetland in Zhanjiang and an intertidal sandy beach in Qingdao, respectively. Spirostrombidium paraurceolare sp. nov. is characterized by three thigmotactic and 8–10 buccal membranelles, the girdle kinety spiralling around cell with one and a half whorls, and located at right anterior third of dorsal side anteriorly. Spirostrombidium faurefremieti sp. nov. can be recognized by a prominently deep and broad buccal cavity, two thigmotactic and 15–19 buccal membranelles, and the girdle kinety spiralling around cell with two whorls. The small subunit ribosomal RNA genes of these two species were sequenced and compared with those of their congeners to reveal nucleotide differences. Phylogenetic analyses revealed that the genus Spirostrombidium is non-monophyletic. Spirostrombidium faurefremieti sp. nov. falls into a clade comprising most congeners, but Spirostrombidium paraurceolare sp. nov. branches off and groups with Varistrombidium kielum with moderate support. A key to the identification of Spirostrombidium species is also provided.www.zoobank.org/urn:lsid:zoobank.org:pub:AB96BEE6-BE3A-4B95-B75A-3469B1C53ABB2  相似文献   
255.
Abstract

Fibroblast growth-factor receptor (FGFR) is a potential target for cancer therapy. We designed three novel series of FGFR1 inhibitors bearing indazole, benzothiazole, and 1H-1,2,4-triazole scaffold via fragment-based virtual screening. All the newly synthesised compounds were evaluated in vitro for their inhibitory activities against FGFR1. Compound 9d bearing an indazole scaffold was first identified as a hit compound, with excellent kinase inhibitory activity (IC50 = 15.0?nM) and modest anti-proliferative activity (IC50 = 785.8?nM). Through two rounds of optimisation, the indazole derivative 9?u stood out as the most potent FGFR1 inhibitors with the best enzyme inhibitory activity (IC50 = 3.3?nM) and cellular activity (IC50 = 468.2?nM). Moreover, 9?u also exhibited good kinase selectivity. In addition, molecular docking study was performed to investigate the binding mode between target compounds and FGFR1.  相似文献   
256.
Abstract

In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10?nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.  相似文献   
257.
Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.It has been known for more than 70 years that dietary restriction (DR)1 can extend the life span and delay the onset of age-related diseases, based on an early rodent study showing such effects (1). However, not until the 1980s was DR recognized as a good model for studying the mechanism of or inhibitory measures for aging (2). So far, extensive studies employing model organisms such as yeasts, nematodes, fruit flies, and rodents have shown that DR has beneficial effects in most of the species studied (for a review, see Ref. 3). Most notably, a recent 20-year-long study showed that monkeys, the species closest to humans, also benefit from DR similarly (4). Although there has not been (or could not have been) a systematic study on the effects of DR on the human life span, several longitudinal studies strongly suggest that changes in dietary intake can affect the life span and/or disease-associated marker values greatly (57).This inverse correlation between dietary intake and long-term health strongly indicates that DR''s effects should involve metabolism, and that DR elicits the reorganization of metabolic pathways. It also seems quite natural that something we eat should affect the body''s metabolism. Despite this seemingly straightforward relationship between diet and metabolism, the mechanisms underlying the beneficial effects of DR are anything but simple. Intensive efforts, spanning decades, to understand the mechanisms of DR have identified several genes that might mediate the effects of DR, such as mTOR, IGF-1, AMPK, and SIRT1 (for a review, see Ref. 8). Still, most of them are involved in early nutrient-sensing steps, and specific metabolic pathways, especially those at the final steps actually responsible for the effects of DR, are largely unknown.This might be at least partially due to the fact that previous studies have focused mostly on genomic or proteomic changes induced by DR, instead of looking at changes in metabolism or metabolites directly. Metabolomics, which has gained much interest in recent years (911), might be a good alternative for addressing the mechanistic uncertainty of DR''s effects, with the direct profiling of metabolic changes elicited by environmental factors. In contrast to genomics or proteomics, which often employ DNA or proteins extracted from particular tissues, metabolomics studies mostly employ body fluids (i.e. urine or blood), which can reflect the metabolic status of multiple organs, enabling investigations at a more systemic level. In particular, urine has been used extensively to study the mechanism of external stimuli (i.e. drugs or toxic insults) at most major target organs, such as the lung, kidney, liver, or heart (1218). Still, metabolomics studies of DR effects have been very limited. A few previous ones reported the changes in phenomenological urine metabolic markers with DR, without identification and/or validation of specific metabolic pathways reflected at the actual tissue or enzyme level (19, 20). Therefore, those studies fell short of providing a mechanistic perspective on DR''s effects. In addition, they employed either NMR or LC/MS approaches without validation across the two analytical platforms.Among the metabolic pathways that can directly affect the integrity of multiple organs, and hence long-term health, are phase II detoxification pathways (21). Typically, lipophilic endo/xenobiotics are metabolized first by a phase I system, such as cytochrome P450, which modifies the compounds so that they have hydrophilic functional groups for increased solubility. In many cases, though, these modifications might increase the reactivity of the compounds, leading to cellular damage. The phase II detoxification systems involve conjugation reactions that attach charged hydrophilic molecular moieties to reactive metabolites, thus facilitating the elimination of the harmful metabolites from body, ultimately reducing their toxicity (22). These systems are thus especially important in protecting cellular macromolecules, such as DNA and proteins, from reactive electrophilic or nucleophilic metabolites. The enzymes involved in these processes include glutathione-S-transferase (GST), sulfotransferase, glycine-N-acyltransferase (GLYAT), and uridinediphospho-glucuronosyltransferase (UGT), with the last enzyme being the most prevalent (23). The beneficial effects of phase II reactions have been particularly studied in relation to the mechanism of healthy dietary ingredients. It is well believed that many such foods can prevent cancers (hence the term “chemoprevention”) by inducing phase II detoxification systems (2426). Although DR also substantially reduces the incidence of cancers, the exact mechanism remains elusive.Here, we employed multi-platform metabolomics to obtain metabolic perspectives on the beneficial effects of DR on rats. Our results about urine metabolomics markers suggest that DR enhances the phase II detoxification pathway, which was confirmed by means of conjugation metabolite profiling and changes in mRNA/protein expression levels of phase II enzymes in actual liver tissues. A possible molecular mechanism was also addressed through the exploration of Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway activation upon DR. We believe the current study provides new metabolic insights into DR''s beneficial effects, as well as a workflow for studying DR''s effects from a metabolic perspective.  相似文献   
258.
259.
Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and plays an important role in sex determination in Drosophila melanogaster. In this study, the snf gene from Antheraea pernyi (Lepidoptera: Saturniidae), an economically important insect, was isolated and characterized. The obtained 925 bp cDNA sequence contains an open reading frame of 669 bp encoding a polypeptide of 222 amino acids, showing 78% sequence identity to that from D. melanogaster. A database search revealed that SNF protein homologs are present in many animals, including invertebrates and vertebrates, with more than 70% amino acid sequence identities, suggesting that they were highly conserved during the evolution of animals. Phylogenetic analysis revealed that A. pernyi SNF was closely related to Bombyx mori SNF. Quantitative real-time PCR (qRT-PCR) analysis showed that the A. pernyi snf gene was transcribed during five larval developmental stages, and in six tested tissues (ovaries, testes, silk glands, fat body, integument, and hemolymph), with the most abundance determined in the gonads (ovaries or testes). Investigation of expression changes throughout embryonic development indicated that A. pernyi snf mRNA was expressed at a low level from days 0 to 4, and reached a maximum level at day 10, but decreased to a low level before hatching. These results suggest that the product of the snf gene may play important roles in the development of A. pernyi.  相似文献   
260.
Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a binding receptor for hepatitis C virus (HCV). Binding of HCV envelope protein E2 to target cells is a prerequisite to DC-SIGN-mediated signaling. Using cell lines with stable or transient expression of DC-SIGN, we investigated effects of soluble HCV E2 protein on ERK pathway. MEK and ERK are activated by the E2 in NIH3T3 cells stably expressing DC-SIGN. Treatment of the cells with antibody to DC-SIGN results in inhibition of the E2 binding as well as the E2-induced MEK and ERK activation. In HEK293T cells transiently expressing DC-SIGN, activation of MEK and ERK is also induced by the E2. Activation of ERK pathway by HCV E2 through DC-SIGN provides useful information for understanding cellular receptor-mediated signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号