首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58209篇
  免费   17751篇
  国内免费   2924篇
  78884篇
  2024年   82篇
  2023年   449篇
  2022年   1196篇
  2021年   2134篇
  2020年   3295篇
  2019年   4974篇
  2018年   5046篇
  2017年   5003篇
  2016年   5409篇
  2015年   5915篇
  2014年   5955篇
  2013年   6524篇
  2012年   4766篇
  2011年   4071篇
  2010年   4576篇
  2009年   3121篇
  2008年   2350篇
  2007年   1751篇
  2006年   1559篇
  2005年   1419篇
  2004年   1283篇
  2003年   1215篇
  2002年   1120篇
  2001年   957篇
  2000年   748篇
  1999年   706篇
  1998年   366篇
  1997年   364篇
  1996年   345篇
  1995年   337篇
  1994年   297篇
  1993年   200篇
  1992年   264篇
  1991年   194篇
  1990年   170篇
  1989年   152篇
  1988年   101篇
  1987年   113篇
  1986年   75篇
  1985年   64篇
  1984年   54篇
  1983年   44篇
  1982年   43篇
  1981年   29篇
  1980年   14篇
  1979年   13篇
  1978年   3篇
  1977年   4篇
  1974年   2篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Factor VIII (FVIII) is the blood coagulation protein which when defective or deficient causes for hemophilia A, a severe hereditary bleeding disorder. Activated FVIII (FVIIIa) is the cofactor to the serine protease factor IXa (FIXa) within the membrane‐bound Tenase complex, responsible for amplifying its proteolytic activity more than 100,000 times, necessary for normal clot formation. FVIII is composed of two noncovalently linked peptide chains: a light chain (LC) holding the membrane interaction sites and a heavy chain (HC) holding the main FIXa interaction sites. The interplay between the light and heavy chains (HCs) in the membrane‐bound state is critical for the biological efficiency of FVIII. Here, we present our cryo‐electron microscopy (EM) and structure analysis studies of human FVIII‐LC, when helically assembled onto negatively charged single lipid bilayer nanotubes. The resolved FVIII‐LC membrane‐bound structure supports aspects of our previously proposed FVIII structure from membrane‐bound two‐dimensional (2D) crystals, such as only the C2 domain interacts directly with the membrane. The LC is oriented differently in the FVIII membrane‐bound helical and 2D crystal structures based on EM data, and the existing X‐ray structures. This flexibility of the FVIII‐LC domain organization in different states is discussed in the light of the FVIIIa–FIXa complex assembly and function. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 448–459, 2013.  相似文献   
982.
The DNA mismatch repair (MMR) system participates in cis‐diamminedichloroplatinum (II) (cisplatin) cytotoxicity through signaling of cisplatin DNA lesions by yet unknown molecular mechanisms. It is thus of great interest to determine whether specialized function of MMR proteins could be associated with cisplatin DNA damage. The major cisplatin 1,2‐d(GpG) intrastrand crosslink and compound lesions arising from misincorporation of a mispaired base opposite either platinated guanine of the 1,2‐d(GpG) adduct are thought to be critical lesions for MMR signaling. Previously, we have shown that cisplatin compound lesion with a mispaired thymine opposite the 3′ platinated guanine triggers new Escherichia coli MutS ATP‐dependent biochemical activities distinguishable from those encountered with DNA mismatch consistent with a role of this lesion in MMR‐dependent signaling mechanism. In this report, we show that the major cisplatin 1,2‐d(GpG) intrastrand crosslink does not confer novel MutS postrecognition biochemical activity as studied by surface plasmon resonance spectroscopy. A fast rate of MutS ATP‐dependent dissociation prevents MutL recruitment to the major cisplatin lesion in contrast to cisplatin compound lesion which authorized MutS‐dependent recruitment of MutL with a dynamic of ternary complex formation distinguishable from that encountered with DNA mismatch substrate. We conclude that the mode of cisplatin DNA damage recognition by MutS and the nature of MMR post‐recognition events are lesion‐dependent and suggest that MMR signaling through the major cisplatin lesion is unlikely to occur. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 636–647, 2013.  相似文献   
983.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D‐PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post‐protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D‐PAGE can be used for monitoring and identification of HCPs post‐protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell‐engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240–251. © 2012 Wiley Periodicals, Inc.  相似文献   
984.
985.
986.
987.
Although there are generalized conceptual models that predict how above and belowground biomass increase during secondary succession after abandonment from agriculture, there are few data to test these models for fine roots (defined as ≤2 mm diameter) in tropical forests. We measured live and dead fine roots (0–10 cm depth) in 18 plots of regenerating tropical dry forest in Costa Rica that varied in age from 5 to 60 yrs, as well as in soil properties. We predicted that both stand age and soil fertility would affect fine roots, with greater values in older forests on low fertility soils. Across two sampling dates and locations, live fine roots varied from 0.35 to 3.53 Mg/ha and dead roots varied from 0.15 to 0.93 Mg/ha. Surprisingly, there was little evidence that surface fine roots varied between sampling dates or in relation to stand age. By contrast, total, live, and dead fine roots averaged across sampling dates within plots were negatively correlated with a multivariate index of soil fertility (Pearson correlations coefficients were ?0.64, ?0.58, and ?0.68, respectively; < 0.01) and other individual edaphic variables including pH, silt, calcium, magnesium, nitrogen, and phosphorus. These results suggest that soil fertility is a more important determinant of fine roots than forest age in tropical dry forests in Costa Rica, and that one‐way these plant communities respond to low soil fertility is by increasing fine roots. Thus, simple conceptual models of forest responses to abandonment from agriculture may not be appropriate for surface fine roots.  相似文献   
988.
Mathematical models are useful tools for studying and exploring biological conversion processes as well as microbial competition in biological treatment processes. A single‐species biofilm model was used to describe biofilm reactor operation at three different hydraulic retention times (HRT). The single‐species biofilm model was calibrated with sparse experimental data using the Monte Carlo filtering method. This calibrated single‐species biofilm model was then extended to a multi‐species model considering 10 different heterotrophic bacteria. The aim was to study microbial diversity in bulk phase biomass and biofilm, as well as the competition between suspended and attached biomass. At steady state and independently of the HRT, Monte Carlo simulations resulted only in one unique dominating bacterial species for suspended and attached biomass. The dominating bacterial species was determined by the highest specific substrate affinity (ratio of µ/KS). At a short HRT of 20 min, the structure of the microbial community in the bulk liquid was determined by biomass detached from the biofilm. At a long HRT of 8 h, both biofilm detachment and microbial growth in the bulk liquid influenced the microbial community distribution. Biotechnol. Bioeng. 2013; 110: 1323–1332. © 2012 Wiley Periodicals, Inc.  相似文献   
989.
Forest cover change directly affects biodiversity, the global carbon budget, and ecosystem function. Within Latin American and the Caribbean region (LAC), many studies have documented extensive deforestation, but there are also many local studies reporting forest recovery. These contrasting dynamics have been largely attributed to demographic and socio‐economic change. For example, local population change due to migration can stimulate forest recovery, while the increasing global demand for food can drive agriculture expansion. However, as no analysis has simultaneously evaluated deforestation and reforestation from the municipal to continental scale, we lack a comprehensive assessment of the spatial distribution of these processes. We overcame this limitation by producing wall‐to‐wall, annual maps of change in woody vegetation and other land‐cover classes between 2001 and 2010 for each of the 16,050 municipalities in LAC, and we used nonparametric Random Forest regression analyses to determine which environmental or population variables best explained the variation in woody vegetation change. Woody vegetation change was dominated by deforestation (?541,835 km2), particularly in the moist forest, dry forest, and savannas/shrublands biomes in South America. Extensive areas also recovered woody vegetation (+362,430 km2), particularly in regions too dry or too steep for modern agriculture. Deforestation in moist forests tended to occur in lowland areas with low population density, but woody cover change was not related to municipality‐scale population change. These results emphasize the importance of quantitating deforestation and reforestation at multiple spatial scales and linking these changes with global drivers such as the global demand for food.  相似文献   
990.
The growing importance of biocatalysis in the syntheses of enantiopure molecules results from the benefits of enzymes regarding selectivity and specificity of the reaction and ecological issues of the process. Ene‐reductases (ERs) from the old yellow enzyme family have received much attention in the last years. These flavo‐enzymes catalyze the trans‐specific reduction of activated C?C bonds, which is an important reaction in asymmetric synthesis, because up to two stereogenic centers can be created in one reaction. However, limitations of ERs described in the literature such as their moderate catalytic activity and their strong preference for NADPH promote the search for novel ERs with improved properties. In this study, we characterized nine novel ERs from cyanobacterial strains belonging to different taxonomic orders and habitats. ERs were identified with activities towards a broad spectrum of alkenes. The reduction of maleimide was catalyzed with activities of up to 35.5 U mg?1 using NADPH. Ketoisophorone and (R)‐carvone, which were converted to the highly valuable compounds (R)‐levodione and (2R,5R)‐dihydrocarvone, were reduced with reaction rates of up to 2.2 U mg?1 with NADPH. In contrast to other homologous ERs from the literature, NADH was accepted at moderate to high rates as well: Enzyme activities of up to 16.7 U mg?1 were obtained for maleimide and up to 1.3 U mg?1 for ketoisophorone and (R)‐carvone. Additionally, excellent stereoselectivities were achieved in the reduction of (R)‐carvone (97–99% de). In particular, AnabaenaER3 from Anabaena variabilis ATCC 29413 and AcaryoER1 from Acaryochloris marina MBIC 11017 were identified as useful biocatalysts. Therefore, novel ERs from cyanobacteria with high catalytic efficiency were added to the toolbox for the asymmetric reduction of alkenes. Biotechnol. Bioeng. 2013; 110: 1293–1301. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号