首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111657篇
  免费   2213篇
  国内免费   3101篇
  116971篇
  2024年   65篇
  2023年   296篇
  2022年   785篇
  2021年   1074篇
  2020年   869篇
  2019年   992篇
  2018年   12616篇
  2017年   11189篇
  2016年   8227篇
  2015年   1858篇
  2014年   1769篇
  2013年   1777篇
  2012年   5940篇
  2011年   14314篇
  2010年   12885篇
  2009年   9053篇
  2008年   10789篇
  2007年   12179篇
  2006年   1066篇
  2005年   1148篇
  2004年   1552篇
  2003年   1570篇
  2002年   1271篇
  2001年   622篇
  2000年   423篇
  1999年   339篇
  1998年   198篇
  1997年   213篇
  1996年   161篇
  1995年   148篇
  1994年   123篇
  1993年   129篇
  1992年   123篇
  1991年   124篇
  1990年   86篇
  1989年   79篇
  1988年   67篇
  1987年   52篇
  1986年   45篇
  1985年   28篇
  1984年   28篇
  1983年   41篇
  1982年   18篇
  1981年   12篇
  1972年   248篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Plant Molecular Biology Reporter - Previously, we cloned the full sequence of masson pine (Pinus massoniana) phosphate transporter gene (PmPT1) from a phosphorus (Pi) deficiency tolerant strain. To...  相似文献   
982.
Interference occurs between individuals when the treatment (or exposure) of one individual affects the outcome of another individual. Previous work on causal inference methods in the presence of interference has focused on the setting where it is a priori assumed that there is “partial interference,” in the sense that individuals can be partitioned into groups wherein there is no interference between individuals in different groups. Bowers et al. (2012, Political Anal, 21, 97–124) and Bowers et al. (2016, Political Anal, 24, 395–403) consider randomization-based inferential methods that allow for more general interference structures in the context of randomized experiments. In this paper, extensions of Bowers et al. that allow for failure time outcomes subject to right censoring are proposed. Permitting right-censored outcomes is challenging because standard randomization-based tests of the null hypothesis of no treatment effect assume that whether an individual is censored does not depend on treatment. The proposed extension of Bowers et al. to allow for censoring entails adapting the method of Wang et al. (2010, Biostatistics, 11, 676–692) for two-sample survival comparisons in the presence of unequal censoring. The methods are examined via simulation studies and utilized to assess the effects of cholera vaccination in an individually randomized trial of 73 000 children and women in Matlab, Bangladesh.  相似文献   
983.
Several studies have shown that low expression of epoxide hydrolase 1 (EPHX1) is closely associated with varying human cancers, including hepatocellular carcinoma (HCC). This study aims to explore the potential mechanism of EPHX1 silencing and revealed a novel regulatory pathway in the pathogenesis of HCC. In this study, micro ribonucleic acid (miR)-184 was predicted and validated to be a regulator of EPHX1 through experiments, and its expression was negatively correlated with the messenger RNA (mRNA) levels of EPHX1 in primary tumors. Elevation of EPHX1 suppressed cell proliferation and migration as well as cell cycle progression, and induced apoptosis, while downregulation of miR-184 exhibited the opposite effect on cellular processes. Moreover, LINC00205 interacted with miR-184 and was markedly downregulated in tumors. The effects of the miR-184 inhibitor on cell proliferation, apoptosis, and migration were reversed in part by the transfection with LINC00205 small interfering RNAs. In addition, LINC00205 acted as a molecular sponge to positively regulate the mRNA and protein levels of EPHX1 via regulating miR-184. The tumorigenicity of HCC cells was enhanced by LINC00205 shRNA but diminished by overexpression of EPHX1 in vivo. Clinically, the EPHX1 expression in patients with HCC was markedly downregulated. Taken together, the results of this study suggest that as a competing endogenous RNA, LINC00205 may regulate EPHX1 by inhibiting miR-184 in the progression of HCC and that targeting the LINC00205/miR-184/EPHX1 axis may provide a treatment protocol for patients.  相似文献   
984.
Cover Image     
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798lyt2169-(pXY1-Pthl-augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.  相似文献   
985.
Previous studies have shown that the expression of periostin (POSTN) is significantly correlated with prognosis in multiple solid cancers. However, the function of POSTN in tumorigenesis and its relationship with clinical outcomes have not been systematically summarized and analyzed. Thus, a meta-analysis was performed to evaluate the prognostic pertinence of POSTN in solid cancer. We conducted a systematic search in the PubMed, EMBASE, Web of Science, and Cochrane library databases, and a total of 10 studies were used to assess the association of POSTN expression and patients’ overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) or odds ratio (OR) and their corresponding 95% confidence intervals (95% CIs) were further calculated to estimate the association between POSTN and relevant clinical parameters of solid cancer patients. The pooled results indicated that POSTN overexpression was associated with poor OS (HR = 2.35, 95% CI = 1.88–2.93, p < .00001) and DFS (HR = 2.70, 95% CI = 2.00–3.65, p < .00001) in a cohort of 993 patients with cancer. Subsequent analyses showed that the positive expression ratio of POSTN was evidently higher in cancer tissues than in normal tissues (OR = 7.44, 95% CI = 3.66–13.95, p < .00001). In addition, subgroup analysis showed that POSTN was related to microvascular invasion (OR = 5.09, 95% CI = 3.07–8.44, p < .00001), tumor differentiation (OR = 2.03, 95% CI = 1.41–2.91, p = .0001), and lymph node metastasis (OR = 3.05, 95% CI = 2.01–4.64, p < .00001). These data showed that POSTN could be a credible prognostic biomarker and a potential therapeutic target in human solid cancer.  相似文献   
986.
Mitofusin 2 (MFN2) is a regulatory protein participating in mitochondria dynamics, cell proliferation, death, differentiation, and so on. This study aims at revealing the functional role of MFN2 in the pluripotency maintenance and primitive differetiation of embryonic stem cell (ESCs). A dox inducible silencing and routine overexpressing approach was used to downregulate and upregulate MFN2 expression, respectively. We have compared the morphology, cell proliferation, and expression level of pluripotent genes in various groups. We also used directed differentiation methods to test the differentiation capacity of various groups. The Akt signaling pathway was explored by the western blot assay. MFN2 upregulation in ESCs exhibited a typical cell morphology and similar cell proliferation, but decreased pluripotent gene markers. In addition, MFN2 overexpression inhibited ESCs differentiation into the mesendoderm, while MFN2 silencing ESCs exhibited a normal cell morphology, slower cell proliferation and elevated pluripotency markers. For differentiation, MFN2 silencing ESCs exhibited enhanced three germs' differentiation ability. Moreover, the protein levels of phosphorylated Akt308 and Akt473 decreased in MFN2 silenced ESCs, and recovered in the neural differentiation process. When treated with the Akt inhibitor, the neural differentiation capacity of the MFN2 silenced ESCs can reverse to a normal level. Taken together, the data indicated that the appropriate level of MFN2 expression is essential for pluripotency and differentiation capacity in ESCs. The increased neural differentiation ability by MFN2 silencing is strongly related to the Akt signaling pathway.  相似文献   
987.
Plastin-3 plays a key role in cancer cell proliferation and invasion, but its prognostic value in pancreatic cancer (PACA) remains poorly defined. In this study, we show that PLS3 messenger RNA is overexpressed in PACA tissue compared with normal tissue. We accumulated 207 cases of PACA specimens to perform immunohistochemical analysis and demonstrated that PLS3 levels correlate with T-classification (p < .001) and pathology (p < .001). Furthermore, overall survival rates (p < .001) in tumors with high PLS3 expression were poor, as assessed through Kaplan–Meier survival analysis. PLS3 was found to be an independent prognostic factor for PACA through multivariate Cox regression analysis. Moreover, we found that PLS3 enhances the proliferation and invasion of tumor cells as assessed through Cell Counting Kit-8, wounding healing assays, and Transwell assays. The upregulation of PLS3 also led to enhanced phosphatidylinositol-3 kinase/protein kinase B signaling in PACA cells. These data suggest that PLS3 is a biomarker to estimate PACA progression and represents a molecular target for PACA therapy.  相似文献   
988.
The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7–MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.  相似文献   
989.
990.
Transferrin receptor (TfR) has been used as a target for the antibody-based therapy of cancer due to its higher expression in tumors relative to normal tissues. Great potential has been shown by anti-TfR antibodies combined with chemotherapeutic drugs as a possible cancer therapeutic strategy. In our study, we investigated the anti-tumor effects of anti-TfR monoclonal antibody (mAb) alone or in combination with sinomenine hydrochloride in vitro. Results suggested that anti-TfR mAb or sinomenine hydrochloride could induce apoptosis, inhibit proliferation, and affect the cell cycle. A synergistic effect was found in relation to tumor growth inhibition and the induction of apoptosis when anti-TfR mAb and sinomenine hydrochloride were used simultaneously. The expression of COX-2 and VEGF protein in HepG2 cells treated with anti-TfR mAb alone was increased in line with increasing dosage of the agent. In contrast, COX-2 expression was dramatically decreased in HepG2 cells treated with sinomenine hydrochloride alone. Furthermore, we demonstrated that the inhibitory effects of sinomenine hydrochloride and anti-TfR mAb administered in combination were more prominent than when the agents were administered singly. To sum up, these results showed that the combined use of sinomenine hydrochloride and anti-TfR mAb may exert synergistic inhibitory effects on human hepatoma HepG2 cells in a COX-2-dependent manner. This finding provides new insight into how tumor cells overcome the interference of iron intake to survive and forms the basis of a new therapeutic strategy involving the development of anti-TfR mAb combined with sinomenine hydrochloride for liver cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号