首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   110篇
  2022年   6篇
  2021年   9篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   8篇
  2016年   9篇
  2015年   27篇
  2014年   31篇
  2013年   24篇
  2012年   51篇
  2011年   37篇
  2010年   28篇
  2009年   28篇
  2008年   25篇
  2007年   42篇
  2006年   27篇
  2005年   33篇
  2004年   44篇
  2003年   46篇
  2002年   29篇
  2001年   34篇
  2000年   36篇
  1999年   24篇
  1998年   9篇
  1997年   9篇
  1996年   14篇
  1995年   9篇
  1994年   11篇
  1993年   11篇
  1992年   31篇
  1991年   35篇
  1990年   23篇
  1989年   18篇
  1988年   21篇
  1987年   18篇
  1986年   23篇
  1985年   17篇
  1984年   9篇
  1983年   18篇
  1982年   8篇
  1981年   4篇
  1980年   14篇
  1979年   10篇
  1978年   7篇
  1977年   8篇
  1972年   4篇
  1968年   3篇
  1966年   6篇
  1965年   3篇
排序方式: 共有997条查询结果,搜索用时 15 毫秒
71.
Circadian (ca. 24 hr) oscillations in expression of mammalian "clock genes" are found not only in the suprachiasmatic nucleus (SCN), the central circadian pacemaker, but also in peripheral tissues. Under constant conditions in vitro, however, rhythms of peripheral tissue explants or immortalized cells damp partially or completely. It is unknown whether this reflects an inability of peripheral cells to sustain rhythms, as SCN neurons can, or a loss of synchrony among cells. Using bioluminescence imaging of Rat-1 fibroblasts transfected with a Bmal1::luc plasmid and primary fibroblasts dissociated from mPer2(Luciferase-SV40) knockin mice, we monitored single-cell circadian rhythms of clock gene expression for 1-2 weeks. We found that single fibroblasts can oscillate robustly and independently with undiminished amplitude and diverse circadian periods. Cells were partially synchronized by medium changes at the start of an experiment, but due to different intrinsic periods, their phases became randomly distributed after several days. Closely spaced cells in the same culture did not have similar phases, implying a lack of functional coupling among cells. Thus, like SCN neurons, single fibroblasts can function as independent circadian oscillators; however, lack of oscillator coupling in dissociated cell cultures leads to a loss of synchrony among individual cells and damping of the ensemble rhythm at the population level.  相似文献   
72.
Tight junction barrier formation and gap junctional communication are two functions directly attributable to cell-cell contact sites. Epithelial and endothelial tight junctions are critical elements of the permeability barrier required to maintain discrete compartments in the lung. On the other hand, gap junctions enable a tissue to act as a cohesive unit by permitting metabolic coupling and enabling the direct transmission of small cytosolic signaling molecules from one cell to another. These components do not act in isolation since other junctional elements, such as adherens junctions, help regulate barrier function and gap junctional communication. Some fundamental elements related to regulation of pulmonary barrier function and gap junctional communication were presented in a Featured Topic session at the 2004 Experimental Biology Conference in Washington, DC, and are reviewed in this summary.  相似文献   
73.
74.
Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar humoral and cellular immune responses in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function.  相似文献   
75.
Mutations in the Drosophila trol gene cause cell cycle arrest of neuroblasts in the larval brain. Here, we show that trol encodes the Drosophila homolog of Perlecan and regulates neuroblast division by modulating both FGF and Hh signaling. Addition of human FGF-2 to trol mutant brains in culture rescues the trol proliferation phenotype, while addition of a MAPK inhibitor causes cell cycle arrest of the regulated neuroblasts in wildtype brains. Like FGF, Hh activates stem cell division in the larval brain in a Trol-dependent fashion. Coimmunoprecipitation studies are consistent with interactions between Trol and Hh and between mammalian Perlecan and Shh that are not competed with heparin sulfate. Finally, analyses of mutations in trol, hh, and ttv suggest that Trol affects Hh movement. These results indicate that Trol can mediate signaling through both of the FGF and Hedgehog pathways to control the onset of stem cell proliferation in the developing nervous system.  相似文献   
76.
By examining adoptively transferred CSFE-labeled lymphocytic choriomeningitis virus (LCMV)-immune donor T cells in Thy-1 congenic hosts inoculated with viruses or with the cytokine inducer poly(I:C), strikingly different responses of bona fide memory T cells were found in response to different stimuli. Poly(I:C) (cytokine) stimulation caused a limited synchronized division of memory CD8 T cells specific to each of five LCMV epitopes, with no increase and sometimes a loss in number, and no change in their epitope hierarchy. Homologous LCMV infection caused more than seven divisions of T cells specific for each epitope, with dramatic increases in number and minor changes in hierarchy. Infections with the heterologous viruses Pichinde and vaccinia (VV) caused more than seven divisions and increases in number of T cells specific to some putatively cross-reactive but not other epitopes and resulted in substantial changes in the hierarchy of the LCMV-specific T cells. Hence, there can be memory T cell division without proliferation (i.e., increase in cell number) in the absence of Ag and division with proliferation in the presence of Ag from homologous or heterologous viruses. Heterologous protective immunity between viruses is not necessarily reciprocal, given that LCMV protects against VV but VV does not protect against LCMV. VV elicited proliferation of LCMV-induced CD8 and CD4 T cells, whereas LCMV did not elicit proliferation of VV-induced T cells. Thus, depending on the pathogen and the sequence of infection, a heterologous agent may selectively stimulate the memory pool in patterns consistent with heterologous immunity.  相似文献   
77.
The present investigation focuses on the synthesis and application of a cross-linking agent that is compatible with the solubility characteristics of chitosan. A water-soluble, blocked-diisocyanate was prepared as a bisulfite adduct to 1,6-hexamethylene diisocyanate, which proved to be stable for several weeks in aqueous, acidic chitosan solutions at room temperature. Thermal cross-linking of chitosan as cast, dried films was investigated by varying the NCO/NH(2) ratio from 0.0 to 1.2. Spectroscopic (IR), thermal (TGA), swelling, and structural (WAXD) studies indicated that chitosan was cross-linked in a concentration-dependent manner under mild thermal conditions: 60 degrees C for 24 h. Cross-linking inefficiency was concluded to be due to lack of mobility of the reacting species in the solid state. In a preliminary study, the enzymatic degradation with Chitinase (E. C. 3.2.1.14) from Streptomyces griseus was found to be the greatest for non-crosslinked chitosan, followed by chitin, and then by cross-linked samples.  相似文献   
78.
BACKGROUND: Overexpression of the Src homology 2 domain protein Shb in beta-cells of transgenic mice has been shown to promote an increased beta-cell mass. To investigate the mechanisms by which Shb controls the beta-cell mass, we have presently studied the effects of Shb overexpression on the IRS-1-induced signaling pathway in mouse islet beta-cells and in insulin-producing RINm5F cells and correlated these effects to growth and death patterns. MATERIALS AND METHODS: Shb overexpression was achieved in RINm5F cells by selection of stable clones or by FACS purification of transiently transfected cells. For Shb overexpression in primary mouse islet cells, a Shb-transgene mouse was used. Cell proliferation and death rates were determined using flow cytometry. Serum-, insulin-, and IGF-1-stimulated signaling events were studied by immunoblot, immunoprecipitation, and in vitro kinase procedures. RESULTS: Transient Shb overexpression in RINm5F cells resulted in increased proliferation. Both Shb-overexpressing RINm5F cells and islet cells from transgenic mice (islet Shb) exhibited increased basal tyrosine phosphorylation of IRS-1. Shb overexpression resulted also in the assembly and activation of a multiunit complex consisting of at least Shb, IRS-1, IRS-2, FAK, and PI3K. Consequently, the phosphorylation of Akt was enhanced under basal conditions in Shb overexpressing cells. Finally, Shb overexpression did not affect insulin-induced phosphorylation of the PI3K-antagonist PTEN. CONCLUSION: It is concluded that the Shb-induced alterations in the IRS-1/PI3K/Akt pathway may be relevant to the understanding of growth and death patterns of insulin-producing cells.  相似文献   
79.
BACKGROUND: Insulin receptor substrate proteins (IRS) mediate various effects of insulin, including regulation of glucose homeostasis, cell growth and survival. To understand the underlying mechanisms explaining the effects of the Src-related tyrosine kinase GTK on beta-cell proliferation and survival, insulin-signalling pathways involving IRS-1 and IRS-2 were studied in islet cells and RINm5F cells overexpressing wild-type and two different mutants of the SRC-related tyrosine kinase GTK. MATERIALS AND METHODS: Islets isolated from transgenic mice and RINm5F cells overexpressing wild-type and mutant GTK were analysed for IRS-1, IRS-2, SHB, AKT and ERK phosphorylation/activity by Western blot analysis. RESULTS: RINm5F cells expressing the kinase active mutant Y504F-GTK and islet cells from GTK(Y504F) -transgenic mice exhibited reduced insulin-induced tyrosine phosphorylation of IRS-1 and IRS-2. In RINm5F cells, the diminished IRS-phosphorylation was accompanied by a reduced insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3K), AKT and Extracellular Signal-Regulated Kinase, partly due to an increased basal activity. In addition, increased tyrosine phosphorylation of the SHB SH2 domain-adaptor protein and its association with IRS-2, IRS-1 and focal adhesion kinase was observed in these cells. RINm5F cells overexpressing wild-type GTK also exhibited reduced activation of IRS-2, PI3K and AKT, whereas cells expressing a GTK mutant with lower kinase activity (GTK(Y394F)) exhibited insignificantly altered responses to insulin compared to the mock transfected cells. Moreover, GTK was shown to associate with and phosphorylate SHB in transiently transfected COS-7 cells, indicating that SHB is a specific substrate for GTK. CONCLUSIONS: The results suggest that GTK signals via SHB to modulate insulin-stimulated pathways in beta cells and this may explain previous results showing an increased beta-cell mass in GTK-transgenic mice.  相似文献   
80.
Flavocytochrome b(2) catalyzes the oxidation of L-lactate to pyruvate and the transfer of electrons to cytochrome c. The enzyme consists of a flavin-binding domain, which includes the active site for lacate oxidation, and a b(2)-cytochrome domain, required for efficient cytochrome c reduction. To better understand the structure and function of intra- and interprotein electron transfer, we have determined the crystal structure of the independently expressed flavin-binding domain of flavocytochrome b(2) to 2.50 A resolution and compared this with the structure of the intact enzyme, redetermined at 2.30 A resolution, both structures being from crystals cooled to 100 K. Whereas there is little overall difference between these structures, we do observe significant local changes near the interface region, some of which impact on amino acid side chains, such as Arg289, that have been shown previously to have an important role in catalysis. The disordered loop region found in flavocytochrome b(2) and its close homologues remain unresolved in frozen crystals of the flavin-binding domain, implying that the presence of the b(2)-cytochrome domain is not responsible for this positional disorder. The flavin-binding domain interacts poorly with cytochrome c, but we have introduced acidic residues in the interdomain interface region with the aim of enhancing cytochrome c binding. While the mutations L199E and K201E within the flavin-binding domain resulted in unimpaired lactate dehydrogenase activity, they failed to enhance electron-transfer rates with cytochrome c. This is most likely due to the disordered loop region obscuring all or part of the surface having the potential for productive interaction with cytochrome c.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号