首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   58篇
  290篇
  2022年   5篇
  2021年   5篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   10篇
  2014年   4篇
  2013年   10篇
  2012年   12篇
  2011年   16篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   13篇
  2004年   5篇
  2003年   12篇
  2002年   7篇
  2001年   11篇
  2000年   11篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1969年   1篇
  1967年   5篇
  1965年   1篇
  1943年   1篇
  1940年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
31.
The aim of the present study was to detect the Staphylococcus aureus delta-toxin using Whole-Cell (WC) Matrix Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-TOF) mass spectrometry (MS), correlate delta-toxin expression with accessory gene regulator (agr) status, and assess the prevalence of agr deficiency in clinical isolates with and without resistance to methicillin and glycopeptides. The position of the delta-toxin peak in the mass spectrum was identified using purified delta-toxin and isogenic wild type and mutant strains for agr-rnaIII, which encodes delta-toxin. Correlation between delta-toxin production and agr RNAIII expression was assessed by northern blotting. A series of 168 consecutive clinical isolates and 23 unrelated glycopeptide-intermediate S. aureus strains (GISA/heterogeneous GISA) were then tested by WC-MALDI-TOF MS. The delta-toxin peak was detected at 3005±5 Thomson, as expected for the naturally formylated delta toxin, or at 3035±5 Thomson for its G10S variant. Multivariate analysis showed that chronicity of S. aureus infection and glycopeptide resistance were significantly associated with delta-toxin deficiency (p?=?0.048; CI 95%: 1.01-10.24; p?=?0.023; CI 95%: 1.20-12.76, respectively). In conclusion, the S. aureus delta-toxin was identified in the WC-MALDI-TOF MS spectrum generated during routine identification procedures. Consequently, agr status can potentially predict infectious complications and rationalise application of novel virulence factor-based therapies.  相似文献   
32.
A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2–3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (?14C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. ?14C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45–55 cm thaw depth), while CO2 from the ambient snow areas was ~100 years old (30-cm thaw depth). Heterotrophic respiration ?14C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere.  相似文献   
33.
Dodd  M. B.  Lauenroth  W. K.  Welker  J. M. 《Oecologia》1998,117(4):504-512
We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs. Received: 23 December 1997 / Accepted: 16 September 1998  相似文献   
34.
Summary The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors, oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive effect annual or perennial grasses have on soil nitrogen content.  相似文献   
35.
Stable oxygen isotope (δ18O) compositions from vertebrate tooth enamel are widely used as biogeochemical proxies for paleoclimate. However, the utility of enamel oxygen isotope values for environmental reconstruction varies among species. Herein, we evaluate the use of stable oxygen isotope compositions from pronghorn (Antilocapra americana Gray, 1866) enamel for reconstructing paleoclimate seasonality, an elusive but important parameter for understanding past ecosystems. We serially sampled the lower third molars of recent adult pronghorn from Wyoming for δ18O in phosphate (δ18OPO4) and compared patterns to interpolated and measured yearly variation in environmental waters as well as from sagebrush leaves, lakes, and rivers (δ18Ow). As expected, the oxygen isotope compositions of phosphate from pronghorn enamel are enriched in 18O relative to environmental waters. For a more direct comparison, we converted δ18Ow values into expected δ18OPO4* values (δ18OWPO4*). Pronghorn δ18OPO4 values from tooth enamel record nearly the full amplitude of seasonal variation from Wyoming δ18OW‐PO4* values. Furthermore, pronghorn enamel δ18OPO4 values are more similar to modeled δ18OW‐PO4* values from plant leaf waters than meteoric waters, suggesting that they obtain much of their water from evaporated plant waters. Collectively, our findings establish that seasonality in source water is reliably reflected in pronghorn enamel, providing the basis for exploring changes in the amplitude of seasonality of ancient climates. As a preliminary test, we sampled historical pronghorn specimens (1720 ± 100 AD), which show a mean decrease (a shift to lower values) of 1–2‰ in δ18OPO4 compared to the modern specimens. They also exhibit an increase in the δ18O amplitude, representing an increase in seasonality. We suggest that the cooler mean annual and summer temperatures typical of the 18th century, as well as enhanced periods of drought, drove differences among the modern and historical pronghorn, further establishing pronghorn enamel as excellent sources of paleoclimate proxy data.  相似文献   
36.
In 1997 and 1998, we sampled the Missouri River, North Dakota to determine if anthropogenic disturbances had influenced catostomid species composition and feeding ecology. We compared two distinct river segments, the Missouri River between the mouth of the Yellowstone River and Lake Sakakawea (the Yellowstone–Sakakawea segment (YSS)), a moderately altered segment and the Missouri River between Garrison Dam and Lake Oahe (the Garrison–Oahe segment (GOS)), a highly altered segment. The segments exhibited greatly different sucker communities. Bigmouth buffalo, Ictiobus cyprinellus, smallmouth buffalo, Ictiobus bubalus, and river carpsucker, Carpiodes carpio, represented 94% of the sucker catch in the YSS, whereas in the GOS, white sucker, Catostomus commersoni, and longnose sucker, Catostomus catostomus, constituted 98% of the sucker catch. In the YSS, high zooplankton densities led to greater sucker zooplanktivory and food niche overlap than in the GOS. Intense anthropogenic disturbances to the GOS are associated with the differences in sucker species composition, prey density and composition, and sucker feeding ecology between the two segments.  相似文献   
37.
Prion protein (PrP) is the major component of the partially protease-resistant aggregate that accumulates in mammals with transmissible spongiform encephalopathies. The two cysteines of the scrapie form, PrP(Sc), were found to be in their oxidized (i.e. disulfide) form (Turk, E., Teplow, D. B., Hood, L. E., and Prusiner, S. B. (1988) Eur. J. Biochem. 176, 21-30); however, uncertainty remains as to whether the disulfide bonds are intra- or intermolecular. It is demonstrated here that the monomers of PrP(Sc) are not linked by intermolecular disulfide bonds. Furthermore, evidence is provided that PrP(Sc) can induce the conversion of the oxidized, disulfide-intact form of the monomeric cellular prion protein to its protease-resistant form without the temporary breakage and subsequent re-formation of the disulfide bonds in cell-free reactions.  相似文献   
38.
The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp -/-) and ZW (Prnp +/+) hippocampus-derived mouse neuronal cells. Prnp -/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice.  相似文献   
39.
Ecosystems - Tundra shrubs reflect climate sensitivities in their growth-ring widths, yet tissue-specific shrub chronologies are poorly studied. Further, the relative importance of regional climate...  相似文献   
40.
Protoplasts of Bacillus stearothermophilus NCA 1503-4R are resistant to osmotic rupture and are not sensitive to mechanical manipulation. Protoplast stability is maintained by divalent cations. The thermostability of protoplasts is enhanced when the cells are grown at elevated temperatures. The membrane content of the cell and the protein-to-lipid ratio of the membrane increases as the growth temperature is increased. The membrane-bound nicotinamide adenine dinucleotide (reduced form) oxidase system from cultures grown at 70 C was more thermostable than the same enzyme system from cultures grown at 55 C. Alkaline phosphatase was resistant to thermal inactivation in the intact protoplast. The extent of this protection is dependent on protoplast stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号