首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   58篇
  2022年   5篇
  2021年   5篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   10篇
  2014年   4篇
  2013年   10篇
  2012年   12篇
  2011年   16篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   13篇
  2004年   5篇
  2003年   12篇
  2002年   7篇
  2001年   11篇
  2000年   11篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1969年   1篇
  1967年   5篇
  1965年   1篇
  1943年   1篇
  1940年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
211.
Sullivan PF  Welker JM 《Oecologia》2007,151(3):372-386
Leaf carbon isotope discrimination (Δ13C) varies with the balance between net photosynthesis (A) and stomatal conductance (g s ). Inferences that can be made with Δ13C are limited, as changes could reflect variation in A and/or g s . Investigators have suggested that leaf δ18O enrichment above source water (Δ18O) may enable differentiation between sources of variation in Δ13C, as leaf Δ18O varies with transpiration rate (E), which is closely correlated with g s when leaves experience similar leaf to air vapor pressure differences. We examined leaf gas exchange of Salix arctica at eight sites with similar air temperatures and relative humidities but divergent soil temperatures and soil water contents near Pituffik, Greenland (76°N, 38°W). We found negative correlations at the site level between g s and Δ18O in bulk leaf tissue (r 2 = 0.62, slope = −17.9‰/mol H2O m−2 s−1, P = 0.02) and leaf α-cellulose (r 2 = 0.83, slope = −11.5‰ mol H2O m−2 s−1, P < 0.01), consistent with the notion that leaf water enrichment declines with increasing E. We also found negative correlations at the site-level between intrinsic water-use efficiency (iWUE) and Δ13C in bulk leaf tissue (r 2 = 0.65, slope = −0.08‰/μmol CO2 /mol H2O, P = 0.02) and leaf α-cellulose (r 2 = 0.50, slope = −0.05 ‰/[μmol CO2 /mol H2O], P = 0.05). When increasing Δ13C was driven by increasing g s alone, we found negative slopes between Δ13C and Δ18O for bulk leaf tissue (−0.664) and leaf α-cellulose (−1.135). When both g s and A max increased, we found steeper negative slopes between Δ13C and Δ18O for bulk leaf tissue (−2.307) and leaf α-cellulose (−1.296). Our results suggest that the dual isotope approach is capable of revealing the qualitative contributions of g s and A max to Δ13C at the site level. In our study, bulk leaf tissue was a better medium than leaf α-cellulose for application of the dual isotope approach.  相似文献   
212.
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories.

Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed.

Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.  相似文献   

213.
The cofactor ATP stimulates the formation of T-antigen double hexamers on the simian virus 40 core origin of replication (I. A. Mastrangelo, P. V. C. Hough, J. S. Wall, M. Dodson, F. B. Dean, and J. Horwitz, Nature [London] 338:658-662, 1989). We report here the pathway for the assembly of hexamers and double hexamers on the core origin. ATP triggers the cooperative assembly of hexamers on the early and late halves of the origin even when they are completely isolated. Hexamer assembly nucleates at T-antigen recognition pentanucleotides in the early half of the origin. In intact origins, assembly of the first hexamer on the early half of the origin cooperatively stimulates the assembly of a second hexamer on the adjacent late half of the origin. Thus, monomer-monomer and hexamer-hexamer interactions of T antigen, allosterically activated by ATP, constitute two distinct types of cooperative interaction with the origin. Finally, we show that the assembly of T-antigen hexamers on isolated half origins leads to the same array of structural changes that T antigen induces in intact origins. We conclude that the origin is divided into complementary halves that each promote the assembly of functional T-antigen hexamers.  相似文献   
214.
Intercellular adhesion molecule-1 and hair follicle regression.   总被引:2,自引:0,他引:2  
Although the intercellular adhesion molecule-1 (ICAM-1) is recognized for its pivotal role in inflammation and immune responses, its role in developmental systems, such as the cyclic growth (anagen) and regression (catagen) of the hair follicle, remains to be explored. Here we demonstrate that ICAM-1 expression in murine skin is even more widespread and more developmentally regulated than was previously believed. In addition to endothelial cells, selected epidermal and follicular keratinocyte subpopulations, as well as interfollicular fibroblasts, express ICAM-1. Murine hair follicles express ICAM-1 only late during morphogenesis. Thereafter, morphologically identical follicles markedly differ in their ICAM-1 expression patterns, which become strikingly hair cycle-dependent in both intra- and extrafollicular skin compartments. Minimal ICAM-1 and leukocyte function-associated (LFA-1) protein and mRNA expression is observed during early anagen and maximal expression during late anagen and catagen. Keratinocytes of the distal outer root sheath, fibroblasts of the perifollicular connective tissue sheath, and perifollicular blood vessels exhibit maximal ICAM-1 immunoreactivity during catagen, which corresponds to changes of LFA-1 expression on perifollicular macrophages. Finally, ICAM-1-deficient mice display significant catagen acceleration compared to wild-type controls. Therefore, ICAM-1 upregulation is not limited to pathological situations but is also important for skin and hair follicle remodeling. Collectively, this suggests a new and apparently nonimmunological function for ICAM-1-related signaling in cutaneous biology.  相似文献   
215.
Summary Carbon allocation among bunchgrass tillers was examined with carbon-11 (11CO2) steady state labelling. Labelled carbon was continuously transported from parent tillers to anatomically attached daughter tillers at a time when morphological characteristics indicated that tiller maturation had occurred. Steady state levels of import into monitored daughter tillers increased within 30 min of either defoliation or shading. Import levels decreased within 30 min of the removal of shading, but remained accelerated throughout an 84 h observation period following defoliation. A second defoliation further increased carbon import into a monitored tiller above the previously accelerated level resulting from the initial defoliation. Carbon import by vegetative tillers in the two bunchgrass species examined may be most appropriately viewed as a series of potentially accelerated import levels above a low level of continuous import.  相似文献   
216.
The presence of l-5,5-dimethylproline (dmP) within an amino acid sequence results in the formation of an X-dmP peptide bond predominantly locked in a cis conformation. However, the common use of this unnatural amino acid has been hampered by the difficulty of the economical incorporation of the dmP residue into longer peptide segments due to the steric hindrance imposed by the dimethyl moieties. Here, we describe synthesis of the C-terminal 36-residue peptide, corresponding to the 89-124 sequence of bovine pancreatic ribonuclease A (RNase A), in which dmP is incorporated as a substitute for Pro93. The peptide was assembled by condensation of protected 5- and 31-residue peptide fragments, which were synthesized by solid-phase peptide methodology using fluorenylmethyloxycarbonyl chemistry. We focused on optimizing the synthesis of the Fmoc-Ser(tBu)-Ser(tBu)-Lys(Boc)-Tyr(tBu)-dmP-OH pentapeptide (residues 89-93) with efficient acylation of the sterically hindered dmP residue. In a comparative study, the reagent O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate was found to be superior to bromo-tris-pyrrolidino-phosphonium hexafluorophosphate and tetramethylfluoroformamidinium hexafluorophosphate for the synthesis of the -Tyr(tBu)-dmP- peptide bond in solution as well as on a resin.  相似文献   
217.
Belowground respiration is typically the largest flux of carbon from terrestrial ecosystems to the atmosphere, making up >70% of total respiration in boreal forests. Recent work has shown that belowground respiration continues during the snow-covered season in boreal ecosystems, but few studies have made complementary measurements during the snow-free season and it remains uncertain what proportion of annual belowground respiration occurs during winter. Traditional models of the relationship between temperature and respiration assume fixed temperature sensitivity, but it has become clear that the apparent temperature sensitivity of belowground respiration increases as soils approach 0°C. Use of fixed temperature sensitivity to model carbon budgets of northern ecosystems may, therefore, yield misleading results. We measured belowground respiration monthly over 2 years in four ecosystems along an elevation gradient in south-central Alaska. Three models, representing different hypotheses about the relationship between temperature and respiration, were confronted with the data. A logistic model, which allows the temperature sensitivity to vary inversely with temperature, and a variation of the Q10 model, which allows the temperature sensitivity to vary seasonally, performed well at all sites and produced similar estimates of seasonal and annual belowground respiration. The traditional Q10 model performed poorly at all sites and overestimated respiration during the snow-covered season. Annual belowground respiration was generally greater than in ecosystems of interior Alaska, where winters are colder and summers are warmer and drier. Belowground respiration during the snow-covered season made up 6–15% of the annual total—a small, but sensitive, component of annual carbon budgets.  相似文献   
218.
Induced pluripotent stem(iPS) cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs) are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cell...  相似文献   
219.
Mycoplasma ovis is a hemoplasma that may cause anemia and mortality in small ruminants. Our aim was to determine whether M. ovis infects populations of free-ranging deer in Brazil. Buffy coat samples from 64 Blastocerus dichotomus from Porto Primavera, 18 Ozotocerus bezoarticus from Pantanal, and 21 O. bezoarticus from Emas National Park were tested. Using a M. ovis PCR protocol to amplify extracted DNA, 46/64 (72%) of deer from Porto Primavera, 10/18 (56%) from Pantanal, and 4/21 (19%) from Emas National Park were positive, giving an overall positive rate of 58% for hemoplasma in these wild deer. Sequencing and phylogenetic analysis of the 16S rRNA gene revealed 3 genetically distinct hemoplasmas including M. ovis, 'Candidatus Mycoplasma erythrocervae', and a hemoplasma most closely related to M. ovis. Phylogenetic analysis of the 23S rRNA gene from selected sequences confirmed these relationships.  相似文献   
220.
Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long‐term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant‐available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N‐availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3?‐N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long‐term changes in soil N‐cycling that would be reflected in soil δ15N values. We found that soil δ15N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号