首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9819篇
  免费   742篇
  国内免费   816篇
  2024年   13篇
  2023年   133篇
  2022年   267篇
  2021年   598篇
  2020年   376篇
  2019年   449篇
  2018年   458篇
  2017年   367篇
  2016年   444篇
  2015年   661篇
  2014年   777篇
  2013年   813篇
  2012年   947篇
  2011年   820篇
  2010年   475篇
  2009年   443篇
  2008年   499篇
  2007年   409篇
  2006年   311篇
  2005年   256篇
  2004年   201篇
  2003年   189篇
  2002年   163篇
  2001年   146篇
  2000年   128篇
  1999年   107篇
  1998年   72篇
  1997年   86篇
  1996年   81篇
  1995年   59篇
  1994年   47篇
  1993年   45篇
  1992年   63篇
  1991年   51篇
  1990年   49篇
  1989年   33篇
  1988年   39篇
  1987年   26篇
  1986年   23篇
  1985年   36篇
  1984年   33篇
  1983年   14篇
  1982年   15篇
  1981年   8篇
  1978年   11篇
  1974年   11篇
  1973年   7篇
  1971年   9篇
  1967年   7篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
991.
Fang LN  Yang XD  Du J 《应用生态学报》2011,22(4):837-844
In January 2006 - September 2007, a controlled litter-removal and root-cutting experiment was conducted to study the effects of different land use patterns (secondary forest or rubber plantation) on soil microbial biomass carbon in Xishuangbanna, China. After the secondary forest converted into rubber plantation, soil nutrient contents and plant carbon input decreased obviously, and soil microbial biomass carbon had a significant decrease. These two forest types had a higher soil microbial biomass carbon in rainy season than in dry season. In secondary forest, soil microbial biomass carbon was significantly positively correlated with soil temperature; while in rubber plantation, the microbial biomass carbon was positively correlated with soil moisture. In secondary forest, soil microbial biomass carbon was controlled by the nutrient inputs from plant roots, but less affected by litter amount. Also in secondary forest, soil microbial biomass carbon was significantly positively correlated with fine-root biomass and its C and N inputs. In rubber plantation, both the fine-root biomass and its C and N inputs and the litter amount had lesser effects on soil microbial biomass carbon. These results suggested that planting rubber induced the decreases of soil nutrient contents and pH value, and, added with serious artificial disturbances, reduced the soil microbial biomass carbon and changed its controlling factors, which in turn would affect other soil ecological processes.  相似文献   
992.
以拉曼被孢霉(Mortierella remanniana)为出发菌株M5,通过原生质体制备,经亚硝酸和激光等进行复合诱变;进行初筛,经摇瓶发酵法复筛,并测定其相关性能指标,获得一生产性能比出发菌株显著提高的突变株M?;其干菌体收率为46.8g/L、油脂产率达34.6g/L、γ-亚麻酸的产率达12.5g/L,分别是出发菌株的1.73倍、2.02倍和2.6倍。通过基因传代实验,说明突变株的基因可稳定遗传。  相似文献   
993.
目的:了解泰山沙参属植物资源现状,测定其根中脂肪、蛋白质及多糖的含量,为合理开发利用泰山沙参属植物资源提供依据。方法:采用野外实地调查法进行资源考察;分别用索氏提取法、考马斯亮蓝法和苯酚-硫酸法测定脂肪、蛋白质和多糖的含量。结果:采集的100余份标本,经鉴定为沙参属植物狭叶沙参[Adenophora gmeli-nii(Spreng)Fisch.]、石沙参(Adenophora polyantha Nakai)、杏叶沙参(Adenophora stricta Mig.)及细叶沙参(Adeno-phora paniculata Nannf.)。泰山沙参属植物狭叶沙参、石沙参、杏叶沙参和细叶沙参脂肪含量分别为2.14%~7.34%,4.27%~7.72%1,.54%~2.51%和4.98%。蛋白质含量分别为0.60~2.10 mg/g0,.80~1.89 mg/g,0.83~0.89 mg/g和1.05 mg/g,多糖含量分别为20.58%~63.21%2,7.74%~65.14%,43.14%~48.47%和45.60%。结论:泰山野生沙参属植物资源丰富,品种多、分布广、蕴藏量大,多糖含量较高,具有较大的开发前景。  相似文献   
994.
Jiang W  Lee J  Jin YM  Qiao Y  Piao R  Jang SM  Woo MO  Kwon SW  Liu X  Pan HY  Du X  Koh HJ 《Molecules and cells》2011,31(4):385-392
Seed germination capability of rice is one of the important traits in the production and storage of seeds. Quantitative trait loci (QTL) associated with seed germination capability in various storage periods was identified using two sets of recombinant inbred lines (RILs) which derived from crosses between Milyang 23 and Tong 88-7 (MT-RILs) and between Dasanbyeo and TR22183 (DT-RILs). A total of five and three main additive effects (QTLs) associated with seed germination capability were identified in MT-RILs and DT-RILs, respectively. Among them, six QTLs were identified repeatedly in various seed storage periods designated as qMT-SGC5.1, qMT-SGC7.2, and qMT-SGC9.1 on chromosomes 5, 7, and 9 in MT-RILs, and qDT-SGC2.1, qDT-SGC3.1, and qDT-SGC9.1 on chromosomes 2, 3, and 9 in DT-RILs, respectively. The QTL on chromosome 9 was identified in both RIL populations under all three storage periods, explaining up to 40% of the phenotypic variation. Eight and eighteen pairs additive × additive epistatic effect (epistatic QTL) were identified in MT-RILs and DT-RILs, respectively. In addition, several near isogenic lines (NILs) were developed to confirm six repeatable QTL effects using controlled deterioration test (CDT). The identified QTLs will be further studied to elucidate the mechanisms controlling seed germination capability, which have important implications for long-term seed storage.  相似文献   
995.
Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  相似文献   
996.
A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at 3.6 × 10(6) CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above 10(5)/ml for approx. 10 days, after which cell numbers decreased to levels of 10(3) CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. 1 × 10(2) CFU/ml was detected. The minimum detection level for quantitative PCR in this study was 1 × 10(2) to 1 × 10(3) CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.  相似文献   
997.
Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN.  相似文献   
998.
Choi du S  Hwang BK 《The Plant cell》2011,23(2):823-842
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.  相似文献   
999.
1000.
Pan MH  Du J  Zhang JY  Huang MH  Li T  Cui HJ  Lu C 《DNA and cell biology》2011,30(10):763-770
The flap endonuclease-1 (FEN-1) gene is involved in DNA replication and repair, and it maintains genomic stability as well as the accuracy of DNA replication under normal growth conditions. However, FEN-1 also plays an important role in apoptosis and cancer development. We cloned the BmFEN-1 gene from Bombyx mori, which was 1343?bp in length and possessed an 1143?bp ORF (123-1266). It consists of seven introns and eight exons that encode a protein with 380 amino acids that has the typical XPG domain. The N-terminal motif is located at amino acids 95-105, and the proliferating cell nuclear antigen interaction motif is located at amino acids 337-344. RNA interference-mediated reduction of BmFEN-1 expression induced cell cycle arrest in S phase in BmE-SWU1?cells. These results suggest that BmFEN-1 can inhibit apoptosis and promote cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号