首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3115篇
  免费   283篇
  国内免费   459篇
  2024年   17篇
  2023年   71篇
  2022年   147篇
  2021年   229篇
  2020年   187篇
  2019年   200篇
  2018年   176篇
  2017年   158篇
  2016年   172篇
  2015年   234篇
  2014年   234篇
  2013年   277篇
  2012年   261篇
  2011年   260篇
  2010年   162篇
  2009年   129篇
  2008年   137篇
  2007年   108篇
  2006年   92篇
  2005年   68篇
  2004年   91篇
  2003年   56篇
  2002年   89篇
  2001年   61篇
  2000年   51篇
  1999年   40篇
  1998年   32篇
  1997年   25篇
  1996年   13篇
  1995年   16篇
  1994年   11篇
  1993年   8篇
  1992年   13篇
  1991年   7篇
  1990年   7篇
  1989年   2篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有3857条查询结果,搜索用时 15 毫秒
31.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   
32.
33.
34.
Dy3+‐doped Y3Al5O12 phosphors were prepared at a relatively low temperature using molten salt synthesis. The phase of the prepared Dy3+‐doped Y3Al5O12 phosphors was confirmed using X‐ray powder diffraction. Results indicated that Dy3+ doping did not change the Y3Al5O12 phase. Following excitation at 352 nm, emission spectra of the Dy3+‐doped Y3Al5O12 phosphors consisted of blue, yellow, and red emission bands. The influence of Dy3+ concentration and excitation wavelength on emission was investigated. The ratio of yellow light to blue light varied with change in Dy3+ doping concentration, due to changes in the structure around Dy3+. Emission intensities also changed when the excitation wavelength was changed. This variation is luminescence generated a system for tunable white light for Dy3+‐doped Y3Al5O12 phosphors.  相似文献   
35.
Atherosclerosis is one of the most common and crucial heart diseases involving the heart and brain. At present, atherosclerosis and its major complications comprise the leading causes of death worldwide. Our purpose was to identify the role of ciRS‐7 in atherosclerosis. Tubulogenesis of HMEC‐1 cell was evaluated utilizing tube formation assay. Cell Counting Kit‐8 assay and flow cytometry were utilized to test viability and apoptosis. Migration assay was utilized to determine the migration capacity of experimental cells. Western blot was applied to examine apoptosis and tube formation‐associated protein expression. In addition, the above experiments were repeated when silencing ciRS‐7, overexpressing ciRS‐7, and upregulating miR‐26a‐5p. HMEC‐1 cells formed tube‐like structures over time. Silencing ciRS‐7 suppressed viability, migration, and tube formation but promoted apoptosis. Oppositely, overexpressing ciRS‐7 reversed the effect in HMEC‐1 cells. miR‐26a‐5p expression was elevated by silencing ciRS‐7 and reduced by overexpressing ciRS‐7. Moreover, overexpressing ciRS‐7 facilitated viability, migration, and tube formation via upregulating miR‐26a‐5p. Conclusively, overexpressing ciRS‐7 mobilized phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway and suppressed c‐Jun N‐terminal kinase (JNK)/p38 pathway. ciRS‐7 exerted influence on apoptosis, viability, migration, and tube formation through mediating PI3K/AKT and JNK/p38 pathways by miR‐26a‐5p downregulation in HMEC‐1 cells.  相似文献   
36.
Zhang  Ziyi  Tang  Shengjie  Gui  Weiwei  Lin  Xihua  Zheng  Fenping  Wu  Fang  Li  Hong 《Journal of physiology and biochemistry》2020,76(2):317-328

Podocyte injury plays a key role in the occurrence and development of kidney diseases. Decreased autophagic activity in podocyte is closely related to its injury and the occurrence of proteinuria. Liver X receptors (LXRs), as metabolic nuclear receptors, participate in multiple pathophysiological processes and express in several tissues, including podocytes. Although the functional roles of LXRs in the liver, adipose tissue and intestine are well established; however, the effect of LXRs on podocytes function remains unclear. In this study, we used mouse podocytes cell line to investigate the effects of LXR activation on podocytes autophagy level and related signaling pathway by performing Western blotting, RT-PCR, GFP-mRFP-LC3 transfection, and immunofluorescence staining. Then, we tested this effect in STZ-induced diabetic mice. Transmission electron microscopy and immunohistochemistry were employed to explore the effects of LXR activation on podocytes function and autophagic activity. We found that LXR activation could inhibit autophagic flux through blocking the formation of autophagosome in podocytes in vitro which was possibly achieved by affecting AMPK, mTOR, and SIRT1 signaling pathways. Furthermore, LXR activation in vivo induced autophagy suppression in glomeruli, leading to aggravated podocyte injury. In summary, our findings indicated that activation of LXRs induced autophagy suppression, which in turn contributed to the podocyte injury.

  相似文献   
37.
Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti‐tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA‐MB 231 and MCF‐7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD‐induced cell proliferation. Treatment with N‐acetyl‐cysteine (NAC), an ROS scavenger, blocked CD‐induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD‐induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c‐Jun N‐terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase‐3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD‐induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA‐MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD‐induced cell cycle arrest and apoptosis in breast cancer cells.  相似文献   
38.
39.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   
40.
Theranostics cover emerging technologies for cell biomarking for disease diagnosis and targeted introduction of drug ingredients to specific malignant sites. Theranostics development has become a significant biomedical research endeavor for effective diagnosis and treatment of diseases, especially cancer. An efficient biomarking and targeted delivery strategy for theranostic applications requires effective molecular coupling of binding ligands with high affinities to specific receptors on the cancer cell surface. Bioaffinity offers a unique mechanism to bind specific target and receptor molecules from a range of non‐targets. The binding efficacy depends on the specificity of the affinity ligand toward the target molecule even at low concentrations. Aptamers are fragments of genetic materials, peptides, or oligonucleotides which possess enhanced specificity in targeting desired cell surface receptor molecules. Aptamer–target binding results from several inter‐molecular interactions including hydrogen bond formation, aromatic stacking of flat moieties, hydrophobic interaction, electrostatic, and van der Waals interactions. Advancements in Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has created the opportunity to artificially generate aptamers that specifically bind to desired cancer and tumor surface receptors with high affinities. This article discusses the potential application of molecular dynamics (MD) simulation to advance aptamer‐mediated receptor targeting in targeted cancer therapy. MD simulation offers real‐time analysis of the molecular drivers of the aptamer‐receptor binding and generate optimal receptor binding conditions for theranostic applications. The article also provides an overview of different cancer types with focus on receptor biomarking and targeted treatment approaches, conventional molecular probes, and aptamers that have been explored for cancer cells targeting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号