首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   101篇
  国内免费   1篇
  2021年   9篇
  2018年   8篇
  2017年   7篇
  2016年   5篇
  2015年   18篇
  2014年   26篇
  2013年   13篇
  2012年   23篇
  2011年   32篇
  2010年   18篇
  2009年   20篇
  2008年   29篇
  2007年   28篇
  2006年   19篇
  2005年   23篇
  2004年   27篇
  2003年   24篇
  2002年   22篇
  2001年   32篇
  2000年   20篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1994年   5篇
  1993年   6篇
  1992年   13篇
  1991年   19篇
  1990年   19篇
  1989年   11篇
  1988年   20篇
  1987年   10篇
  1986年   19篇
  1985年   9篇
  1984年   16篇
  1983年   6篇
  1982年   15篇
  1981年   8篇
  1980年   11篇
  1979年   14篇
  1978年   14篇
  1977年   21篇
  1976年   5篇
  1974年   7篇
  1973年   6篇
  1971年   8篇
  1970年   5篇
  1969年   6篇
  1968年   4篇
  1966年   6篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
71.
Laird DJ  De Tomaso AW  Weissman IL 《Cell》2005,123(7):1351-1360
Stem cells are highly conserved biological units of development and regeneration. Here we formally demonstrate that stem cell lineages are also legitimate units of natural selection. In a colonial ascidian, Botryllus schlosseri, vascular fusion between genetically distinct individuals results in cellular parasitism of somatic tissues, gametes, or both. We show that genetic hierarchies of somatic and gametic parasitism following fusion can be replicated by transplanting cells between colonies. We prospectively isolate a population of multipotent, self-renewing stem cells that retain their competitive phenotype upon transplantation. Their single-cell contribution to either somatic or germline fates, but not to both, is consistent with separate lineages of somatic and germline stem cells or pluripotent stem cells that differentiate according to the niche in which they land. Since fusion is restricted to individuals that share a fusion/histocompatibility allele, these data suggest that histocompatibility genes in Botryllus evolved to protect the body from parasitic stem cells usurping asexual or sexual inheritance.  相似文献   
72.
Lichens are slow-growing associations of fungi and unicellular green algae or cyanobacteria. They are poikilohydric organisms whose lifestyle in many cases consists of alternating periods of desiccation, with low metabolic activity, and hydration, which induces increase in their metabolism. Lichens have apparently adapted to such extreme transitions between desiccation and rehydration, but the mechanisms that govern these adaptations are still poorly understood. In this study, the effect of rehydration on the production of reactive oxygen species and nitric oxide as well as low-molecular-weight antioxidants was investigated with the lichen Ramalina lacera. Rehydration of R. lacera resulted in the initiation of and a rapid increase in photosynthetic activity. Recovery of photosynthesis was accompanied by bursts of intracellular production of reactive oxygen species and nitric oxide. Laser-scanning confocal microscopy using dichlorofluorescein fluorescence revealed that formation of reactive oxygen species following rehydration was associated with both symbiotic partners of the lichen. The rate and extent of reactive oxygen species production were similar in the light and in the dark, suggesting a minor contribution of photosynthesis. Diaminofluorescein fluorescence, indicating nitric oxide formation, was detected only in fungal hyphae. Activities associated with rehydration did not have a deleterious effect on membrane integrity as assessed by measurement of electrolyte leakage, but water-soluble low-molecular-weight antioxidants decreased significantly.  相似文献   
73.
We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes acting in the yeast early secretory pathway. Hierarchical clustering, together with novel analytical strategies and experimental verification, revealed or clarified the role of many proteins involved in extensively studied processes such as sphingolipid metabolism and retention of HDEL proteins. At a broader level, analysis of the E-MAP delineated pathway organization and components of physical complexes and illustrated the interconnection between the various secretory processes. Extension of this strategy to other logically connected gene subsets in yeast and higher eukaryotes should provide critical insights into the functional/organizational principles of biological systems.  相似文献   
74.
ER-associated degradation (ERAD) of glycoproteins depends on dual recognition of protein misfolding and remodeling of the substrate's N-linked glycans. After recognition, substrates are retrotranslocated to the cytosol for proteasomal degradation. To explore the directionality of this process, we fused a highly stable protein, DHFR, to the N or C terminus of the soluble ERAD substrate CPY* in yeast. Degradation of the C-terminal CPY*-DHFR fusion is markedly slowed and is accompanied by DHFR release in the ER lumen. Thus, folded lumenal domains can impede protein retrotranslocation. The ER lumenal protein Yos9p is required for both release of DHFR and degradation of multiple ERAD substrates. Yos9p forms a complex with substrates and has a sugar binding pocket that is essential for its ERAD function. Nonetheless, substrate recognition persists even when the sugar binding site is mutated or CPY* is unglycosylated. These and other considerations suggest that Yos9p plays a critical role in the bipartite recognition of terminally misfolded glycoproteins.  相似文献   
75.

Background  

Microarray experiments, as well as other genomic analyses, often result in large gene sets containing up to several hundred genes. The biological significance of such sets of genes is, usually, not readily apparent.  相似文献   
76.
77.
78.
79.
Oxidative protein folding in eukaryotes: mechanisms and consequences   总被引:29,自引:0,他引:29  
The endoplasmic reticulum (ER) provides an environment that is highly optimized for oxidative protein folding. Rather than relying on small molecule oxidants like glutathione, it is now clear that disulfide formation is driven by a protein relay involving Ero1, a novel conserved FAD-dependent enzyme, and protein disulfide isomerase (PDI); Ero1 is oxidized by molecular oxygen and in turn acts as a specific oxidant of PDI, which then directly oxidizes disulfide bonds in folding proteins. While providing a robust driving force for disulfide formation, the use of molecular oxygen as the terminal electron acceptor can lead to oxidative stress through the production of reactive oxygen species and oxidized glutathione. How Ero1p distinguishes between the many different PDI-related proteins and how the cell minimizes the effects of oxidative damage from Ero1 remain important open questions.  相似文献   
80.
New methodologies for surveillance and identification of Mycobacterium tuberculosis are required to stem the spread of disease worldwide. In addition, the ability to discriminate mycobacteria at the strain level may be important to contact or source case investigations. To this end, we are developing MALDI-TOF MS methods for the identification of M. tuberculosis in culture. In this report, we describe the application of MALDI-TOF MS, as well as statistical analysis including linear discriminant and random forest analysis, to 16 medically relevant strains from four species of mycobacteria, M. tuberculosis, M. avium, M. intracellulare, and M. kansasii. Although species discrimination can be accomplished on the basis of unique m/z values observed in the MS fingerprint spectrum, discrimination at the strain level is predicted on the relative abundance of shared m/z values among strains within a species. For the 16 mycobacterial strains investigated in the present study, it is possible to unambiguously identify strains within a species on the basis of MALDI-TOF MS data. The error rate for classification of individual strains using linear discriminant analysis was 0.053 using 37 m/z variables, whereas the error rate for classification of individual strains using random forest analysis was 0.023 using only 18 m/z variables. In addition, using random forest analysis of MALDI-TOF MS data, it was possible to correctly classify bacterial strains as either M. tuberculosis or non-tuberculous with 100% accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号