首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17776篇
  免费   1410篇
  国内免费   1577篇
  2024年   28篇
  2023年   196篇
  2022年   532篇
  2021年   1001篇
  2020年   656篇
  2019年   794篇
  2018年   762篇
  2017年   525篇
  2016年   748篇
  2015年   1119篇
  2014年   1333篇
  2013年   1388篇
  2012年   1668篇
  2011年   1476篇
  2010年   899篇
  2009年   817篇
  2008年   904篇
  2007年   798篇
  2006年   721篇
  2005年   671篇
  2004年   519篇
  2003年   474篇
  2002年   371篇
  2001年   297篇
  2000年   277篇
  1999年   271篇
  1998年   170篇
  1997年   158篇
  1996年   181篇
  1995年   136篇
  1994年   154篇
  1993年   98篇
  1992年   113篇
  1991年   108篇
  1990年   79篇
  1989年   72篇
  1988年   48篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   37篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
781.
Groundwater and nitrogen fertilizer overuse severely threatens crop productions; thus, current ecological agriculture requires low irrigation and nitrogen fertilizer inputs. The effects of combined reduced irrigation and nitrogen fertilizer addition on soil organism (e.g., mite) community and biodiversity remain poorly understood. We analyzed soil mite community composition, wheat grain yield, and soil characteristics in a 10‐year manipulation experiment with two levels of irrigation (reduced and conventional irrigation) and five nitrogen fertilizer levels (0, 70, 140, 210, and 280 kg N/ha). Reduced irrigation (20% reduction, from 280 to 220 mm) and nitrogen fertilizer (25% reduction, from 280 to 210 kg N/ha) addition did not significantly influence soil mite community and wheat yield. The relative abundances of fungivores and predators showed negative quadratic relationships with wheat yield, while that of plant parasites showed a positive relationship. The relationships between soil mite trophic groups and wheat yield revealed that we can evaluate the impacts of reduced irrigation and nitrogen fertilizer addition from the perspective of soil fauna. Soil mite community composition was altered by soil abiotic factors prior to reduced irrigation and nitrogen fertilizer addition. Overall, moderate reductions of irrigation and nitrogen fertilizer may not threaten to soil mite community and diversity or decrease crop production; in contrast, such reductions will benefit mite community development and the sustainable agriculture.  相似文献   
782.
Plant community may provide products and services to humans. However, patterns and drivers of community stability along a precipitation gradient remain unclear. A regional‐scale transect survey was conducted over a 3‐year period from 2013 to 2015, along a precipitation gradient from 275 to 555 mm and spanning 440 km in length from west to east in a temperate semiarid grassland of northern China, a central part of the Eurasian steppe. Our study provided regional‐scale evidence that the community stability increased with increasing precipitation in the semiarid ecosystem. The patterns of community stability along a precipitation gradient were ascribed to community composition and community dynamics, such as species richness and species asynchrony, rather than the abiotic effect of precipitation. Species richness regulated the temporal mean (μ) of aboveground net primary productivity (ANPP), while species asynchrony regulated the temporal standard deviation (σ) of ANPP, which in turn contributed to community stability. Our findings highlight the crucial role of community composition and community dynamics in regulating community stability under climate change.  相似文献   
783.
Information on the spatial distribution of cytotypes and karyotype variation in plants is critical for studies of the origin and evolution of polyploid complexes. Here, the spatial distribution of cytological races and intraspecific variation in the karyotype of Lycoris radiata, an endemic species to East Asia, is investigated. Conventional karyotype analysis methods were used to determine ploidy level and karyotypical characteristics in 2,420 individuals from 114 populations of Lradiata nearly covering the whole distribution areas in China. Of 114 populations studied, 52 (45.61%), 58 (50.88%), and 4 (3.51%) are diploid, triploid, and mixoploid populations, respectively, with 1,224, 1,195, and 1 individuals being diploid, triploid, and tetraploid, respectively. The triploid possesses a much wider distribution range than the diploid, with the former almost occupying the entire range of this complex species in East Asia and the latter distributing in the middle and east regions of China. Triploids tend to occur at high altitudes, and the relationship between the ploidy and altitude is significantly positive but low (r= 0.103, p < 0.01). About 98.6% of examined bulbs have a common karyotype consisting of 22 or 33 acrocentric (A) chromosomes. Some aberrant chromosomes which should be generated from A‐type chromosome have been found including metacentrics (m), small metacentrics (m′), and B‐type chromosome. The results can provide a fundamental cytogeographic data for further studies on the evolutionary origins and adaptive divergences of polyploids, especially the triploid, within Lradiata using molecular and/or ecological methods in the future.  相似文献   
784.
785.
786.
787.
788.
Microbial destabilization induced by pathogen infection has severely affected plant quality and output, such as Anoectochilus roxburghii, an economically important herb. Soft rot is the main disease that occurs during A. roxburghii culturing. However, the key members of pathogens and their interplay with non-detrimental microorganisms in diseased plants remain largely unsolved. Here, by utilizing a molecular ecological network approach, the interactions within bacterial communities in endophytic compartments and the surrounding soils during soft rot infection were investigated. Significant differences in bacterial diversity and community composition between healthy and diseased plants were observed, indicating that the endophytic communities were strongly influenced by pathogen invasion. Endophytic stem communities of the diseased plants were primarily derived from roots and the root endophytes were largely derived from rhizosphere soils, which depicts a possible pathogen migration image from soils to roots and finally the stems. Furthermore, interactions among microbial members indicated that pathogen invasion might be aided by positively correlated native microbial members, such as Enterobacter and Microbacterium, who may assist in colonization and multiplication through a mutualistic relationship in roots during the pathogen infection process. Our findings will help open new avenues for developing more accurate strategies for biological control of A. roxburghii bacterial soft rot disease.  相似文献   
789.
Black soldier fly (BSF) larvae are considered a promising biological reactor to convert organic waste and reduce the impact of zoonotic pathogens on the environment. We analysed the effects of BSF larvae on Staphylococcus aureus and Salmonella spp. populations in pig manure (PM), which showed that BSF larvae can significantly reduce the counts of the associated S. aureus and Salmonella spp. Then, using a sterile BSF larval system, we validated the function of BSF larval intestinal microbiota in vivo to suppress pathogens, and lastly, we isolated eight bacterial strains from the BSF larval gut that inhibit S. aureus. Results indicated that functional microbes are essential for BSF larvae to antagonise S. aureus. Moreover, the analysis results of the relationship between the intestinal microbiota and S. aureus and Salmonella spp. showed that Myroides, Tissierella, Oblitimonas, Paenalcalignes, Terrisporobacter, Clostridium, Fastidiosipila, Pseudomonas, Ignatzschineria, Savagea, Moheibacter and Sphingobacterium were negatively correlated with S. aureus and Salmonella. Overall, these results suggested that the potential ability of BSF larvae to inhibit S. aureus and Salmonella spp. present in PM is accomplished primarily by gut-associated microorganisms.  相似文献   
790.
入侵植物与重金属胁迫的相互作用研究进展 全球变化改变了植物群落的分布格局,包括入侵植物,而人为污染可能降低本地植物对入侵植物的抗性。因此,本文总结了近几十年本地植物、入侵植物和植物-土壤生态系统中重金属生物地球化学行为的研究,以加深我们对入侵植物与环境胁迫因子相互作用的认识。我们的研究结合已有文献报道表明:(i)入侵物种对环境胁迫的影响具有异质性, (ii)影响的大小是多变的, (iii)即使在同一影响类型内,影响类型也具有多向性。然而,入侵植物暴露在重金属环境中表现出更强的自我保护机制,对重金属的生物可利用性和毒性有正向或负向的影响。另一方面,由于入侵植物普遍具有较高的耐受性,加之本地植物暴露于有毒重金属污染时具有“逃逸行为”,重金属胁迫环境更有利于植物的成功入侵。但是,对于入侵植物的重金属等元素组成是否与污染地区的本地植物不同,目前尚无共识。因此,在全球范围内对外来入侵植物与本土植物的植物体内、凋落物和土壤污染物含量进行定量比较是今后研究的一个重要方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号