首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19280篇
  免费   1418篇
  国内免费   1532篇
  22230篇
  2024年   49篇
  2023年   332篇
  2022年   663篇
  2021年   1097篇
  2020年   674篇
  2019年   912篇
  2018年   807篇
  2017年   562篇
  2016年   880篇
  2015年   1166篇
  2014年   1465篇
  2013年   1528篇
  2012年   1819篇
  2011年   1579篇
  2010年   996篇
  2009年   857篇
  2008年   952篇
  2007年   818篇
  2006年   663篇
  2005年   581篇
  2004年   487篇
  2003年   439篇
  2002年   392篇
  2001年   288篇
  2000年   292篇
  1999年   303篇
  1998年   195篇
  1997年   202篇
  1996年   188篇
  1995年   154篇
  1994年   137篇
  1993年   96篇
  1992年   140篇
  1991年   114篇
  1990年   101篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
RGS (regulators of G protein signaling) proteins regulate G protein signaling by accelerating GTP hydrolysis, but little is known about regulation of GTPase-accelerating protein (GAP) activities or roles of domains and subunits outside the catalytic cores. RGS9-1 is the GAP required for rapid recovery of light responses in vertebrate photoreceptors and the only mammalian RGS protein with a defined physiological function. It belongs to an RGS subfamily whose members have multiple domains, including G(gamma)-like domains that bind G(beta)(5) proteins. Members of this subfamily play important roles in neuronal signaling. Within the GAP complex organized around the RGS domain of RGS9-1, we have identified a functional role for the G(gamma)-like-G(beta)(5L) complex in regulation of GAP activity by an effector subunit, cGMP phosphodiesterase gamma and in protein folding and stability of RGS9-1. The C-terminal domain of RGS9-1 also plays a major role in conferring effector stimulation. The sequence of the RGS domain determines whether the sign of the effector effect will be positive or negative. These roles were observed in vitro using full-length proteins or fragments for RGS9-1, RGS7, G(beta)(5S), and G(beta)(5L). The dependence of RGS9-1 on G(beta)(5) co-expression for folding, stability, and function has been confirmed in vivo using transgenic Xenopus laevis. These results reveal how multiple domains and regulatory polypeptides work together to fine tune G(talpha) inactivation.  相似文献   
993.
The Upf1 protein in yeast has been implicated in the modulation of efficient translation termination as well as in the accelerated turnover of mRNAs containing premature stop codons, a phenomenon called nonsense-mediated mRNA decay (NMD). A human homolog of the yeast UPF1, termed HUpf1/RENT1, has also been identified. The HUpf1 has also been shown to play a role in NMD in mammalian cells. Comparison of the yeast and human UPF1 proteins demonstrated that the amino terminal cysteine/histidine-rich region and the region comprising the domains that define this protein as a superfamily group I helicase have been conserved. The yeast Upf1p demonstrates RNA-dependent ATPase and 5' --> 3' helicase activities. In this paper, we report the expression, purification, and characterization of the activities of the human Upf1 protein. We demonstrate that human Upf1 protein displays a nucleic-acid-dependent ATPase activity and a 5'--> 3' helicase activity. Furthermore, human Upf1 is an RNA-binding protein whose RNA-binding activity is modulated by ATP. Taken together, these results indicate that the activities of the Upf1 protein are conserved across species, reflecting the conservation of function of this protein throughout evolution.  相似文献   
994.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   
995.
A large number of post‐translational modifications (PTMs) in proteins are buried in the unassigned mass spectrometric (MS) spectra in shot‐gun proteomics datasets. Because the modified peptide fragments are low in abundance relative to the corresponding non‐modified versions, it is critical to develop tools that allow facile evaluation of assignment of PTMs based on the MS/MS spectra. Such tools will preferably have the ability to allow comparison of fragment ion spectra and retention time between the modified and unmodified peptide pairs or group. Herein, MMS2plot, an R package for visualizing peptide‐spectrum matches (PSMs) for multiple peptides, is described. MMS2plot features a batch mode and generates the output images in vector graphics file format that facilitate evaluation and publication of the PSM assignment. MMS2plot is expected to play an important role in PTM discovery from large‐scale proteomics datasets generated by liquid chromatography‐MS/MS. The MMS2plot package is freely available at https://github.com/lileir/MMS2plot under the GPL‐3 license.  相似文献   
996.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
997.
类胡萝卜素是所有光合生物及一些非光合原核生物和真菌合成的亲脂性天然色素, 对植物、动物和人都具有广泛的生物学作用。随着现代分析技术的快速发展, 越来越多的类胡萝卜素得以发现和利用。该文通过对植物类胡萝卜素的提取、分离纯化、含量测定和结构鉴定等方面的最新研究进展进行系统阐述, 以期为植物类胡萝卜素的有效开发利用提供技术支撑。  相似文献   
998.
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome‐wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family‐based sample recruited for reading difficulties in Toronto (n = 624) and a population‐based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP‐based analysis identified suggestive SNPs (P ~ 5 × 10?7) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene‐based analysis identified significant associations (P < 2.72 × 10?6) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP‐based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10?181), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10?48) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10?6; threshold for significance = 7.14 × 10?3). Overlap was also found between RD and autism spectrum disorder (ASD) as top‐ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.  相似文献   
999.
The racial/ethnic disparities in DNA methylation patterns indicate that molecular markers may play a role in determining the individual susceptibility to diseases in different ethnic groups. Racial disparities in DNA methylation patterns have been identified in prostate cancer, breast cancer and colorectal cancer and are related to racial differences in cancer prognosis and survival.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号