首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   31篇
  国内免费   18篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2016年   8篇
  2015年   15篇
  2014年   10篇
  2013年   20篇
  2012年   13篇
  2011年   16篇
  2010年   16篇
  2009年   13篇
  2008年   14篇
  2007年   20篇
  2006年   23篇
  2005年   15篇
  2004年   15篇
  2003年   24篇
  2002年   16篇
  2001年   20篇
  2000年   12篇
  1999年   15篇
  1998年   13篇
  1997年   5篇
  1996年   7篇
  1995年   11篇
  1994年   5篇
  1993年   10篇
  1992年   8篇
  1991年   20篇
  1990年   11篇
  1989年   6篇
  1988年   17篇
  1987年   9篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   9篇
  1980年   4篇
  1979年   8篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1972年   3篇
  1961年   2篇
  1959年   3篇
  1922年   2篇
排序方式: 共有527条查询结果,搜索用时 15 毫秒
31.
Retinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1) by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout) and later stages of secondary cone death (rd1 mutants). Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP.  相似文献   
32.
Field studies analyzing the stable isotope composition of xylem water are providing important information on ecosystem water relations. However, the capacity of stable isotopes to characterize the functioning of plants in their environment has not been fully explored because of methodological constraints on the extent and resolution at which samples could be collected and analysed. Here, we introduce an in situ method offering the potential to continuously monitor the stable isotope composition of tree xylem water via its vapour phase using a commercial laser‐based isotope analyser and compact microporous probes installed into the xylem. Our technique enables efficient high‐frequency measurement with intervals of only a few minutes per sample while eliminating the need for costly and cumbersome destructive collection of plant material and laboratory‐based processing. We present field observations of xylem water hydrogen and oxygen isotope compositions obtained over several days including a labelled irrigation event and compare them against results from concurrent destructive sampling with cryogenic distillation and mass spectrometric analysis. The data demonstrate that temporal changes as well as spatial patterns of integration in xylem water isotope composition can be resolved through direct measurement. The new technique can therefore present a valuable tool to study the hydraulic architecture and water utilization of trees.  相似文献   
33.
Aquaculture practices from sub-Saharan Africa are characterised by low production, owing to improper technology. Production can be increased through integrating fish farming with other existing on-farm activities, particularly livestock husbandry. We assessed the role of fish-poultry integration on all male Nile tilapia, Oreochromis niloticus growth performance, yields and economic benefits among smallholder farmers in sub-Saharan Africa, Tanzania. The study also compared phytoplankton species composition, abundance and biomass between the fish-poultry integration and non-integrated system. After 180 days of the experiment, all male O. niloticus cultured under fish-poultry integration exhibited significantly higher growth rates than those in the non-integrated system (p < 0.05). Gross fish yield (GFY), net fish yield (NFY) and net annual yields (NAY) obtained from fish-poultry integration were significantly higher than those from non-integrated system (p < 0.05). Partial enterprise budget analysis revealed that fish-poultry integration was more profitable than the non-integrated system. Moreover, fish-poultry integrated system produced significantly higher phytoplankton abundance and biomass than those from the non-integrated system. Results demonstrate that rural smallholder farmers can achieve higher growth rate, farm net yields and income by integrating all male O. niloticus with other on-farm activities than practising a stand-alone fish culture system.  相似文献   
34.
35.
The cyclic derivative of 13(S)-hydroperoxolinolenic acid, 12-oxophytodienoic acid, serves as a signal transducer in higher plants, mediating mechanotransductory processes and plant defenses against a variety of pathogens, and also serves as a precursor for the biosynthesis of jasmonic acid, a mediator of plant herbivore defense. Biosynthesis of 12-oxophytodienoic acid from alpha-linolenic acid occurs in plastids, mainly in chloroplasts, and is thought to start with free linolenic acid liberated from membrane lipids by lipase action. In Arabidopsis thaliana, the glycerolipid fraction contains esterified 12-oxophytodienoic acid, which can be released enzymatically by sn1-specific, but not by sn2-specific, lipases. The 12-oxophytodienoyl glycerolipid fraction was isolated, purified, and characterized. Enzymatic, mass spectrometric, and NMR spectroscopic data allowed us to establish the structure of the novel oxylipin as sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride. The novel class of lipids is localized in plastids. Purified monogalactosyl diglyceride was not converted to the sn1-(12-oxophytodienoyl) derivative by the combined action of (soybean) lipoxygenase and (A. thaliana) allene oxide synthase, an enzyme ensemble that converts free alpha-linolenic acid to free 12-oxophytodienoic acid. When leaves were wounded, a significant and transient increase in the level of (12-oxophytodienoyl)-monogalactosyl diglyceride was observed. In A. thaliana, the major fraction of 12-oxophytodienoic acid occurs esterified at the sn1 position of the plastid-specific glycerolipid, monogalactosyl diglyceride.  相似文献   
36.
Lysosomal breakdown of glycosphingolipids with short hydrophilic carbohydrate headgroups is achieved by the simultaneous action of specific hydrolases and sphingolipid activator proteins (SAPs). Activator proteins are considered to facilitate the enzyme/substrate interaction between water-soluble enzymes and membrane-bound substrates. Sphingomyelin, containing the small hydrophilic phosphorylcholine moiety, is hydrolysed by acid sphingomyelinase (acid SMase). Recent experimental data on the in vivo and in vitro role of activator proteins in sphingomyelin breakdown by acid SMase are reviewed. These data combined with the results using homogenous protein preparations as well as a liposomal assay system mimicking the physiological conditions suggest that lysosomal sphingomyelin degradation is not critically dependent on any of the known activator proteins. Moreover, evidence is provided that the assumed intramolecular activator domain of acid SMase and especially the presence of negatively charged lipids in the lysosomes are sufficient for sphingomyelin turnover.  相似文献   
37.
The objective of this study was to investigate the effects of dietary zinc deficiency and diet restriction on bone development in growing rats, and to determine whether any adverse effects could be reversed by dietary repletion. Weanling rats were fed either a zinc-deficient diet ad libitum (ZD; <1 mg zinc/kg) or nutritionally complete diet (30 mg zinc/kg) either ad libitum (CTL) or pair-fed to the intake of the ZD group (DR; diet-restricted) for 3 weeks (deficiency phase) and then all groups were fed the zinc-adequate diet ad libitum for 3, 7, or 23 days (repletion phase). Excised femurs were analyzed for bone mineral density (BMD) using dual-energy x-ray absorptiometry, and plasma was analyzed for markers of bone formation (osteocalcin) and resorption (Ratlaps). After the deficiency phase, ZD had lower body weight and reduced femur BMD, zinc, and phosphorus concentrations compared with DR; and these parameters were lower in DR compared with CTL. Femur calcium concentrations were unchanged among the groups. Reduced plasma osteocalcin in ZD and elevated plasma Ratlaps in DR suggested that zinc deficiency limits bone formation while diet restriction accelerates bone resorption activity. After 23 days of repletion, femur size, BMD, and zinc concentrations remained lower in ZD compared with DR and CTL. Body weight and femur phosphorus concentrations remained lower in both ZD and DR compared with CTL after repletion. There were no differences in plasma osteocalcin concentrations after the repletion phase, but the plasma Ratlaps concentrations remained elevated in DR compared with CTL. In summary, both ZD and DR lead to osteopenia during rapid growth, but the mechanisms appear to be due to reduced modeling in ZD and higher turnover in DR. Zinc deficiency was associated with a greater impairment in bone development than diet restriction, and both deficiencies limited bone recovery during repletion in growing rats.  相似文献   
38.
Several lines of evidence have implicated activated protein C (APC) to be an endogenous inhibitor of the inflammatory septic cascade. APC may exhibit direct anti-inflammatory properties, independent of its antithrombotic effects. Chemokines influence the interaction of monocytes at the endothelium during infection and sepsis and are involved in the molecular events leading to an adverse and lethal outcome of sepsis. Defining regulatory mechanisms on the monocytic release profile of the proinflammatory C-C chemokines macrophage inflammatory protein-1-alpha (MIP-1-alpha) and monocyte chemoattractant protein-1 (MCP-1) might have therapeutic implications for the treatment of sepsis. We established a monocytic cell model of inflammation by the addition of lipopolysaccharide (LPS) and examined the effect of human APC on LPS-stimulated chemokine release from the monocytic cell line THP-1. We found that human APC in supra-physiological concentrations of 2.5-10 microg/ml inhibited the LPS-induced release of the chemokines MIP-1-alpha and MCP-1, as measured by enzyme-linked immunosorbent assays (ELISA) at 6 up to 24 h. In addition to experiments on THP-1 cells, recombinant human APC in concentrations of 50 ng/ml was found to have an inhibiting effect on the release of MIP-1-alpha from freshly isolated mononuclear cells of septic patients. The ability of APC to decrease the release of the C-C chemokine MIP-1-alpha from the monocytic cell line THP-1 and from human monocytes may identify a novel immunomodulatory pathway by which APC exerts its anti-inflammatory action and may contribute to control the inflammatory response in sepsis.  相似文献   
39.
Three of the nitrilase isoenzymes of Arabidopsis thaliana (L.) Heynh. are located on chromosome III in tandem and these genes (NIT2/NIT1/NIT3 in the 5′→3′ direction) encode highly similar polypeptides. Copy DNAs encompassing the entire coding sequences for all three nitrilases were expressed in Escherichia coli as fusion proteins containing a C-terminal hexahistidine extension. All three nitrilases were obtained as enzymatically active proteins, and their characteristics were determined, including a detailed comparative analysis of their substrate preferences. All three nitrilases converted indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA), albeit, compared to the most effective substrates found, phenylpropionitrile (PPN), allylcyanide, (phenylthio)acetonitrile and (methylthio)acetonitrile, with low affinity and velocity. The preferred substrates are either naturally occurring substrates, which may originate from glucosinolate breakdown, or they are close relatives of these. Thus, a major function of NIT1, NIT2 and NIT3 is assigned to be the conversion to carboxylic acids of nitriles from glucosinolate turnover or degradation. While all nitrilases exhibit a similar pH optimum around neutral, and NIT1 and NIT3 exhibit a similar temperature optimum around 30 °C independent of the substrate analyzed (IAN, PPN), NIT2 showed a remarkably different temperature optimum for IAN (15 °C) and PPN (35–40 °C). A potential role for NIT2 in breaking seed dormancy in A. thaliana by low temperatures (stratification), however, was ruled out, although NIT2 was the predominantly expressed nitrilase isoform in developing embryos and in germinating seeds, as judged from an analysis of β-glucuronidase reporter gene expression under the control of the promoters of the four isogenes. It is possible that NIT2 is involved in supplying IAA during seed development rather than during stratification. Received: 13 May 2000 / Accepted: 14 August 2000  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号