首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   15篇
  国内免费   1篇
  2022年   3篇
  2021年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   13篇
  2012年   7篇
  2011年   9篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1970年   1篇
  1958年   1篇
  1951年   1篇
  1950年   1篇
  1924年   1篇
排序方式: 共有204条查询结果,搜索用时 343 毫秒
101.
102.
The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.  相似文献   
103.
Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.  相似文献   
104.
105.
106.
1. Zooplankton are important in transferring dietary nutrients, including polyunsaturated fatty acids (PUFA), up through aquatic food webs. 2. We tested the hypothesis that the taxonomic composition of zooplankton affects the retention and subsequent transfer of PUFA from upwards through the food web. Using laboratory experiments, we investigated dietary PUFA accumulation and bioconversion capacities of six cladoceran species (Ceriodaphnia sp., Daphnia longispina, Daphnia magna, Daphnia pulex, Scapholeberis mucronata and Simocephalus vetulus) fed on two diets (Scenedesmus obliquus and Cryptomonas sp.) that differed in their PUFA profiles. We performed experiments at two different temperatures (14 and 20 °C) to assess the role of temperature in the trophic transfer of PUFA. 3. There was little variation in the concentrations of PUFA in these cladocerans which were controlled by dietary PUFA supply. Moreover, as expected, the concentrations of PUFA in all cladoceran species were higher at low temperature. 4. However, even if the composition of PUFA in the cladoceran species generally corresponded to that in their diet, preferential accumulation of some PUFA was recorded in all these taxa. When fed on a highly unsaturated fatty acid‐deficient diet, all the cladocerans showed some ability to convert C18‐PUFA into arachidonic acid and eicosapentaenoic acid. Interspecific variation in the ability to accumulate and bioconvert PUFA in cladocerans was more pronounced at low temperature (14 °C) for both diets. 5. Our results strongly suggest that in heterogeneous habitats with food partitioning between co‐existing cladocerans, foraging behaviour may affect the transfer of PUFA more strongly than interspecific variation in accumulating and/or bioconverting dietary PUFA.  相似文献   
107.
108.
109.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   
110.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号