首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   7篇
  115篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
21.
22.
Acute thromboembolic diseases remain the major global cause of death or disability. Although an array of thrombolytic and antithrombotic drugs has been approved to treat or prevent thromboembolic diseases, many more drugs that target specific clotting mechanisms are under development. Here a novel zebrafish model of photochemical thrombosis is reported and its prospective application for the screening and preclinical testing of thrombolytic agents in vivo is demonstrated. Through photochemical excitation, a thrombus was induced to form at a selected section of the dorsal aorta of larval zebrafish, which had been injected with photosensitizers. Such photochemical thrombosis can be consistently controlled to occlude partially or completely the targeted blood vessel. Detailed mechanistic tests indicate that the zebrafish model of photochemical thrombosis exhibits essential features of classical coagulation and a thrombolytic pathway. For demonstration, tissue plasminogen activator (tPA), a clinically feasible thrombolytic agent, was shown to effectively dissolve photochemically induced blood clots. In light of the numerous unique advantages of zebrafish as a model organism, our approach is expected to benefit not only the development of novel thrombolytic and antithrombotic strategies but also the fundamental or translational research targeting hereditary thrombotic or coagulation disorders.

  相似文献   

23.

Background

There is much discussion in the cancer drug development community about how to incorporate molecular tools into early-stage clinical trials to assess target modulation, measure anti-tumor activity, and enrich the clinical trial population for patients who are more likely to benefit. Small, molecularly focused clinical studies offer the promise of the early definition of optimal biologic dose and patient population.

Methods and Findings

Based on preclinical evidence that phosphatase and tensin homolog deleted on Chromosome 10 (PTEN) loss sensitizes tumors to the inhibition of mammalian target of rapamycin (mTOR), we conducted a proof-of-concept Phase I neoadjuvant trial of rapamycin in patients with recurrent glioblastoma, whose tumors lacked expression of the tumor suppressor PTEN. We aimed to assess the safety profile of daily rapamycin in patients with glioma, define the dose of rapamycin required for mTOR inhibition in tumor tissue, and evaluate the antiproliferative activity of rapamycin in PTEN-deficient glioblastoma. Although intratumoral rapamycin concentrations that were sufficient to inhibit mTOR in vitro were achieved in all patients, the magnitude of mTOR inhibition in tumor cells (measured by reduced ribosomal S6 protein phosphorylation) varied substantially. Tumor cell proliferation (measured by Ki-67 staining) was dramatically reduced in seven of 14 patients after 1 wk of rapamycin treatment and was associated with the magnitude of mTOR inhibition (p = 0.0047, Fisher exact test) but not the intratumoral rapamycin concentration. Tumor cells harvested from the Ki-67 nonresponders retained sensitivity to rapamycin ex vivo, indicating that clinical resistance to biochemical mTOR inhibition was not cell-intrinsic. Rapamycin treatment led to Akt activation in seven patients, presumably due to loss of negative feedback, and this activation was associated with shorter time-to-progression during post-surgical maintenance rapamycin therapy (p < 0.05, Logrank test).

Conclusions

Rapamycin has anticancer activity in PTEN-deficient glioblastoma and warrants further clinical study alone or in combination with PI3K pathway inhibitors. The short-term treatment endpoints used in this neoadjuvant trial design identified the importance of monitoring target inhibition and negative feedback to guide future clinical development.Trial registration: http://www.ClinicalTrials.gov (#NCT00047073).  相似文献   
24.
25.
C Setoyama  G Liau  B de Crombrugghe 《Cell》1985,41(1):201-209
Transformation of NIH 3T3 fibroblasts by v-mos causes a decrease in the levels of type I collagen RNA. In NIH 3T3 cells that have been made resistant to G418 by transfection with a plasmid in which the mouse alpha 2(I) collagen promoter is linked to the neo gene, subsequent v-mos transformation causes a loss of G418 resistance. After mutagenesis of these v-mos-transformed cells, G418-resistant colonies were selected. Two of these G418-resistant mutants showed an increased expression of the neo gene and of the endogenous type I collagen and fibronectin genes, without changes in their levels of v-mos RNA or in their ability to induce tumors. The mutations might alter cellular trans-acting factors that either directly or indirectly control the expression of the type I collagen and fibronectin genes in transformed cells.  相似文献   
26.
The major excreted protein of transformed mouse fibroblasts, a secreted, mannose 6-phosphate-containing glycoprotein, is induced in nontransformed cells by a variety of transforming agents, by phorbol esters, and by platelet-derived growth factor. We report here the molecular cloning of the cDNA encoding this protein and demonstrate that its induction is a consequence of enhanced mRNA levels for major excreted protein in both tetradecanoyl phorbol acetate-treated 3T3 cells and 3T3 cells transformed by a variety of retroviruses or retroviral oncogenes. These results indicate that tumor promoters and retroviral transformation might share a common pathway of action in cultured cells and that major excreted protein is a molecular marker for the growth response of cells to these agents.  相似文献   
27.
In vitro acylation of rat gastric mucus glycoprotein with [3H]palmitic acid   总被引:3,自引:0,他引:3  
The incorporation of fatty acids into gastric mucus glycoproteins was studied by incubating rat gastric mucosal cell suspensions with [9,10-3H]palmitic acid and [3H]proline. The mucus glycoprotein polymer, secreted into the growth medium (extracellular) and that contained within the cells (intracellular), was purified from the other components of the secretion, thoroughly delipidated, and then analyzed for the radiolabeled tracers. Both pools of mucus glycoprotein, incubated in the presence of [3H]palmitic acid, contained radioactive label which could not be removed by gel filtration, CsCl density gradient centrifugation, sodium dodecyl sulfate-gel electrophoresis, or lipid extraction. Treatment of the purified mucus glycoprotein with 1 M hydroxylamine or 0.3 M methanolic KOH released the radioactivity, thus indicating that [3H]palmitic acid was covalently bound by ester linkage to the glycoprotein. The released radioactivity was associated mainly (87%) with palmitic acid. The incorporation ratio of [3H]proline to [3H]palmitic acid was 0.12:1.0 in the extracellular glycoprotein and 1.38:1.0 in the intracellular glycoprotein, which suggested that acylation of mucus glycoprotein occurs in the intracellular compartment after completion of its polypeptide core. The fact that incorporation of [3H]palmitic acid was greater in the glycoprotein subunits than in the glycoprotein polymer indicates that acylation takes place near the end of subunit processing but before their assembly into the high molecular weight mucus glycoprotein polymer.  相似文献   
28.
A sulfotransferase activity that catalyzes the transfer of sulfate ester group from 3'-phosphoadenosine 5'-phosphosulfate to carbohydrate chains of gastric mucus glycoprotein has been demonstrated in the antral and body mucosa of rat stomach. Subcellular fractionation studies revealed that the enzyme is associated with Golgi-rich membrane fraction. The sulfotransferase activity of this fraction in antral mucosa was about 35% lower than that in the body. Optimum enzyme activity was obtained with 0.5% Triton X-100 and 30 mM NaF at a pH of 6.8 using desulfated mucus glycoprotein substrate. The enzyme was equally capable of sulfation of the proteolytically degraded and reduced forms of the desulfated glycoprotein, but the acceptor capacity of the intact mucus glycoprotein was about 60% lower than that of the desulfated preparation. The enzyme preparation also catalyzed the transfer of sulfate to galactosylceramide. The sulfation of mucus glycoprotein, however, was not affected by the presence of this glycolipid, suggesting that the sulfotransferase involved in mucus glycoprotein sulfation is different from that responsible for the synthesis of sulfatoglycosphingolipid. The mucus glycoprotein sulfotransferase activity was inhibited by ethanol. The rate of inhibition was proportional to the concentration of ethanol up to 0.3 M and was of the competitive type. The apparent Km value of the enzyme for mucus glycoprotein was 10.5 X 10(-6) M (21 mg/ml), and the KI in the presence of ethanol was 4.7 x 10(-1) M. The 35S-labeled mucus glycoprotein product of the enzyme reaction gave in CsCl density gradient a band in which the 35S label coincided with the glycoprotein. Alkaline borohydride reductive cleavage of this glycoprotein led to the liberation of the label into reduced acidic oligo-saccharide fraction. Most of the label was found incorporated in three oligosaccharides. These were identified as tri-, tetra-, and pentasaccharides, each carrying a labeled sulfate ester group on the terminal N-acetyl-glucosamine residue. Based on the results of structural analyses, the most abundant oligosaccharide was characterized as SO3H----6GlcNAc beta 1----3Gal beta 1----3GalNAc-ol.  相似文献   
29.
Diabetes mellitus (DM) is a major risk factor for atherosclerosis and causes multiple cardiovascular complications. Although high glucose can induce matrix metalloproteinases (MMPs), its inhibitors and cell apoptosis, little is known about the roles of MMPs in regulating cell apoptosis in response to high glucose. To address this issue, we elucidated the relationship between MMPs, its inhibitors and cell apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with medium containing 5.5 mM or 33 mM of glucose in the presence or the absence of ascorbic acid and MMP inhibitors (GM6001 and endogenous tissue inhibitors of MMPs, TIMP-1, and TIMP-2). For detection of cell apoptosis, the cell death detection ELISA assay was used. The results revealed that high glucose-induced apoptosis could be suppressed by ascorbic acid, GM6001 and TIMP-2, but not by TIMP-1. The activities of MMP-2, MMP-9 and its inhibitors, TIMP-1, TIMP-2 after high glucose treatment, were also detected by ELISA method. We found that the activated form of MMP-2, but not MMP-9, was increased, while the level of TIMP-2, but not TIMP-1, was decreased. In Western blot and RT-PCR analysis, the expression of TIMP-2, but not TIMP-1, after high glucose treatment was downregulated, whereas the levels of MMP-2 and -9 proteins and mRNA were not changed. The present study indicated that oxidative stress induced by high glucose might be involved in the opposite effects on MMP-2 activation and TIMP-2 downregulation. This reactive oxygen species (ROS)-dependent MMP-2 activation in turn mediates high glucose-induced cell apoptosis in HUVECs.  相似文献   
30.
Chen HW  Pan CH  Liau MY  Jou R  Tsai CJ  Wu HJ  Lin YL  Tao MH 《Journal of virology》1999,73(12):10137-10145
In this study, we evaluated the relative role of the structural and nonstructural proteins of the Japanese encephalitis virus (JEV) in inducing protective immunities and compared the results with those induced by the inactivated JEV vaccine. Several inbred and outbred mouse strains immunized with a plasmid (pE) encoding the JEV envelope protein elicited a high level of protection against a lethal JEV challenge similar to that achieved by the inactivated vaccine, whereas all the other genes tested, including those encoding the capsid protein and the nonstructural proteins NS1-2A, NS3, and NS5, were ineffective. Moreover, plasmid pE delivered by intramuscular or gene gun injections produced much stronger and longer-lasting JEV envelope-specific antibody responses than immunization of mice with the inactivated JEV vaccine did. Interestingly, intramuscular immunization of plasmid pE generated high-avidity antienvelope antibodies predominated by the immunoglobulin G2a (IgG2a) isotype similar to a sublethal live virus immunization, while gene gun DNA immunization and inactivated JEV vaccination produced antienvelope antibodies of significantly lower avidity accompanied by a higher IgG1-to-IgG2a ratio. Taken together, these results demonstrate that the JEV envelope protein represents the most critical antigen in providing protective immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号