首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10071篇
  免费   839篇
  国内免费   873篇
  11783篇
  2024年   26篇
  2023年   167篇
  2022年   340篇
  2021年   570篇
  2020年   409篇
  2019年   449篇
  2018年   443篇
  2017年   288篇
  2016年   428篇
  2015年   668篇
  2014年   745篇
  2013年   784篇
  2012年   896篇
  2011年   775篇
  2010年   526篇
  2009年   424篇
  2008年   541篇
  2007年   467篇
  2006年   420篇
  2005年   328篇
  2004年   271篇
  2003年   254篇
  2002年   189篇
  2001年   174篇
  2000年   151篇
  1999年   168篇
  1998年   90篇
  1997年   81篇
  1996年   76篇
  1995年   75篇
  1994年   96篇
  1993年   48篇
  1992年   53篇
  1991年   69篇
  1990年   43篇
  1989年   48篇
  1988年   32篇
  1987年   26篇
  1986年   34篇
  1985年   25篇
  1984年   16篇
  1983年   12篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1978年   4篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
结核分枝杆菌ABC转运蛋白与物质的跨膜转运   总被引:1,自引:0,他引:1  
结核分枝杆菌作为一种胞内寄生菌,主要存在于巨噬细胞吞噬体内,并且通过与宿主细胞竞争摄取营养物质、主动排出有毒物质来维持生存。因此,参与上述过程的ABC转运蛋白在结核分枝杆菌的致病中发挥着举足轻重的作用。已有报道结核分枝杆菌基因组编码了38个ABC转运蛋白。这类蛋白质有着广泛的底物结合谱,参与了无机离子、糖类、氨基酸、寡肽、药物等多种物质的跨膜转运。本文将对结核分枝杆菌编码的ABC转运蛋白超家族中的不同成员及其底物特异性、转运机制以及与毒力的关系的研究进展进行综述。  相似文献   
992.
The Yanesha are a Peruvian population who inhabit an environment transitional between the Andes and Amazonia. They present cultural traits characteristic of both regions, including in the language they speak: Yanesha belongs to the Arawak language family (which very likely originated in the Amazon/Orinoco lowlands), but has been strongly influenced by Quechua, the most widespread language family of the Andes. Given their location and cultural make‐up, the Yanesha make for an ideal case study for investigating language and population dynamics across the Andes‐Amazonia divide. In this study, we analyze data from high and mid‐altitude Yanesha villages, both Y chromosome (17 STRs and 16 SNPs diagnostic for assigning haplogroups) and mtDNA data (control region sequences and 3 SNPs and one INDEL diagnostic for assigning haplogroups). We uncover sex‐biased genetic trends that probably arose in different stages: first, a male‐biased gene flow from Andean regions, genetically consistent with highland Quechua‐speakers and probably dating back to Inca expansion; and second, traces of European contact consistent with Y chromosome lineages from Italy and Tyrol, in line with historically documented migrations. Most research in the history, archaeology and linguistics of South America has long been characterized by perceptions of a sharp divide between the Andes and Amazonia; our results serve as a clear case‐study confirming demographic flows across that ‘divide’. Am J Phys Anthropol 155:600–609, 2014. © 2014 The Authors. American journal of physical Anthropology published by Wiley Periodocals, Inc.  相似文献   
993.
A serum metabolomics method based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF-MS) was performed for a holistic evaluation of the metabolic changes of collagen-induced arthritis (CIA) in rats and to assess the interventional effects of type II collagen (CII) in this model. Partial least-squares-discriminant analysis (PLS-DA) was employed to study the metabolic profiling of CIA rats and control rats. Ten metabolites, namely, 12(S)-HHTrE, 12(S)-HEPE, PGE2, TXB2, 12(S)-HETE, LysoPE(16:0), PE(O-18:0/0:0), Lyso-PE(18:2), Lyso-PE(20:4), and Lyso-PC(22:5) were identified as differential metabolites associated with the pathogenesis of CIA. These results suggested that dysregulation of the arachidonic acid (AA) and phospholipid metabolic networks is involved in the pathomechanism of CIA. Differential metabolomics and histopathological analyses demonstrated that CII inhibits the progress of arthritis. Furthermore, the therapeutic effects of CII on CIA may involve regulation of the disordered AA and phospholipid metabolic networks. This metabolomics study provides new insights into the pathogenesis of arthritis and, furthermore, indicates the potential mechanism underlying the significantly increased prevalence of metabolic syndrome, defined as a clustering of cardiovascular disease (CVD) risk factors, in arthritis patients.  相似文献   
994.
MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma.  相似文献   
995.

Objective

Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages.

Methods and results

Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively.

Conclusion

Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.  相似文献   
996.
997.
Mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential, which makes them attractive targets for regenerative medicine applications. Efficient gene transfer into MSCs is essential for basic research in developmental biology and for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors (CARs), but not into MSCs, which lack CAR expression. To overcome this problem, an Adv coated with cationic polymer polyethyleneimine (PEI) was developed. In this study, we demonstrated that PEI coating with an optimal ratio can enhance adenoviral transduction of MSCs without cytotoxicity. We also investigated the physicochemical properties and internalization mechanisms of the PEI-coated Adv. These results could help to evaluate the potentiality of the PEI-coated Adv as a prototype vector for efficient and safe transduction into MSCs.  相似文献   
998.
Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion.  相似文献   
999.
Adaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphotyrosine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2‐independent signalling from ShcA has an important role in development. Using mass spectrometry, we identified the multidomain scaffold IQGAP1 as a ShcA‐interacting protein. IQGAP1 and ShcA co‐precipitate and are co‐recruited to membrane ruffles induced by activated receptors of the ErbB family, and a reduction in ShcA protein levels inhibits the formation of lamellipodia. We used NMR to characterize a direct, non‐canonical ShcA PTB domain interaction with a helical fragment from the IQGAP1 N‐terminal region that is pTyr‐independent. This interaction is mutually exclusive with binding to a more conventional PTB domain peptide ligand from PTP–PEST. ShcA‐mediated recruitment of IQGAP1 may have an important role in cytoskeletal reorganization downstream of activated receptors at the cell surface.  相似文献   
1000.
Aims: To investigate the intracellular ethanol accumulation in yeast cells by using laser tweezers Raman spectroscopy (LTRS). Methods and Results: Ethanol accumulation in individual yeast cells during aerobic fermentation triggered by excess glucose was studied using LTRS. Its amount was obtained by comparing intracellular and extracellular ethanol concentrations during initial process of ethanol production. We found that (i) yeasts start to produce ethanol within 3 min after triggering aerobic fermentation, (ii) average ratio of intracellular to extracellular ethanol is 1·54 ± 0·17 during the initial 3 h after addition of 10% (w/v) excess glucose and (iii) the accumulated intracellular ethanol is released when aerobic fermentation is stimulated with decreasing glucose concentration. Conclusions: Intracellular ethanol accumulation occurs in initial stage of a rapid aerobic fermentation and high glucose concentration may attribute to this accumulation process. Significance and Impact of the Study: This work demonstrates LTRS is a real‐time, reagent‐free, in situ technique and a powerful tool to study kinetic process of ethanol fermentation. This work also provides further information on the intracellular ethanol accumulation in yeast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号